EdwardoSunny's picture
finished
85ab89d
raw
history blame
5.75 kB
"""
Copyright (c) 2022, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
import logging
import torch
from omegaconf import OmegaConf
from minigpt4.common.registry import registry
from minigpt4.models.base_model import BaseModel
from minigpt4.models.blip2 import Blip2Base
from minigpt4.models.mini_gpt4 import MiniGPT4
from minigpt4.processors.base_processor import BaseProcessor
__all__ = [
"load_model",
"BaseModel",
"Blip2Base",
"MiniGPT4",
]
def load_model(name, model_type, is_eval=False, device="cpu", checkpoint=None):
"""
Load supported models.
To list all available models and types in registry:
>>> from minigpt4.models import model_zoo
>>> print(model_zoo)
Args:
name (str): name of the model.
model_type (str): type of the model.
is_eval (bool): whether the model is in eval mode. Default: False.
device (str): device to use. Default: "cpu".
checkpoint (str): path or to checkpoint. Default: None.
Note that expecting the checkpoint to have the same keys in state_dict as the model.
Returns:
model (torch.nn.Module): model.
"""
model = registry.get_model_class(name).from_pretrained(model_type=model_type)
if checkpoint is not None:
model.load_checkpoint(checkpoint)
if is_eval:
model.eval()
if device == "cpu":
model = model.float()
return model.to(device)
def load_preprocess(config):
"""
Load preprocessor configs and construct preprocessors.
If no preprocessor is specified, return BaseProcessor, which does not do any preprocessing.
Args:
config (dict): preprocessor configs.
Returns:
vis_processors (dict): preprocessors for visual inputs.
txt_processors (dict): preprocessors for text inputs.
Key is "train" or "eval" for processors used in training and evaluation respectively.
"""
def _build_proc_from_cfg(cfg):
return (
registry.get_processor_class(cfg.name).from_config(cfg)
if cfg is not None
else BaseProcessor()
)
vis_processors = dict()
txt_processors = dict()
vis_proc_cfg = config.get("vis_processor")
txt_proc_cfg = config.get("text_processor")
if vis_proc_cfg is not None:
vis_train_cfg = vis_proc_cfg.get("train")
vis_eval_cfg = vis_proc_cfg.get("eval")
else:
vis_train_cfg = None
vis_eval_cfg = None
vis_processors["train"] = _build_proc_from_cfg(vis_train_cfg)
vis_processors["eval"] = _build_proc_from_cfg(vis_eval_cfg)
if txt_proc_cfg is not None:
txt_train_cfg = txt_proc_cfg.get("train")
txt_eval_cfg = txt_proc_cfg.get("eval")
else:
txt_train_cfg = None
txt_eval_cfg = None
txt_processors["train"] = _build_proc_from_cfg(txt_train_cfg)
txt_processors["eval"] = _build_proc_from_cfg(txt_eval_cfg)
return vis_processors, txt_processors
def load_model_and_preprocess(name, model_type, is_eval=False, device="cpu"):
"""
Load model and its related preprocessors.
List all available models and types in registry:
>>> from minigpt4.models import model_zoo
>>> print(model_zoo)
Args:
name (str): name of the model.
model_type (str): type of the model.
is_eval (bool): whether the model is in eval mode. Default: False.
device (str): device to use. Default: "cpu".
Returns:
model (torch.nn.Module): model.
vis_processors (dict): preprocessors for visual inputs.
txt_processors (dict): preprocessors for text inputs.
"""
model_cls = registry.get_model_class(name)
# load model
model = model_cls.from_pretrained(model_type=model_type)
if is_eval:
model.eval()
# load preprocess
cfg = OmegaConf.load(model_cls.default_config_path(model_type))
if cfg is not None:
preprocess_cfg = cfg.preprocess
vis_processors, txt_processors = load_preprocess(preprocess_cfg)
else:
vis_processors, txt_processors = None, None
logging.info(
f"""No default preprocess for model {name} ({model_type}).
This can happen if the model is not finetuned on downstream datasets,
or it is not intended for direct use without finetuning.
"""
)
if device == "cpu" or device == torch.device("cpu"):
model = model.float()
return model.to(device), vis_processors, txt_processors
class ModelZoo:
"""
A utility class to create string representation of available model architectures and types.
>>> from minigpt4.models import model_zoo
>>> # list all available models
>>> print(model_zoo)
>>> # show total number of models
>>> print(len(model_zoo))
"""
def __init__(self) -> None:
self.model_zoo = {
k: list(v.PRETRAINED_MODEL_CONFIG_DICT.keys())
for k, v in registry.mapping["model_name_mapping"].items()
}
def __str__(self) -> str:
return (
"=" * 50
+ "\n"
+ f"{'Architectures':<30} {'Types'}\n"
+ "=" * 50
+ "\n"
+ "\n".join(
[
f"{name:<30} {', '.join(types)}"
for name, types in self.model_zoo.items()
]
)
)
def __iter__(self):
return iter(self.model_zoo.items())
def __len__(self):
return sum([len(v) for v in self.model_zoo.values()])
model_zoo = ModelZoo()