Spaces:
Running
Running
""" | |
Copyright (c) 2022, salesforce.com, inc. | |
All rights reserved. | |
SPDX-License-Identifier: BSD-3-Clause | |
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause | |
""" | |
import argparse | |
import os | |
import random | |
import numpy as np | |
import torch | |
import torch.backends.cudnn as cudnn | |
import yaml | |
# import esm | |
import minigpt4.tasks as tasks | |
from minigpt4.esm.esm_config import Config | |
from minigpt4.common.dist_utils import get_rank, init_distributed_mode | |
from minigpt4.common.logger import setup_logger | |
from minigpt4.common.optims import ( | |
LinearWarmupCosineLRScheduler, | |
LinearWarmupStepLRScheduler, | |
) | |
from minigpt4.common.registry import registry | |
from minigpt4.common.utils import now | |
# imports modules for registration | |
from minigpt4.datasets.builders import * | |
from minigpt4.datasets.pdb_dataset import ESMDataset | |
from minigpt4.datasets.qa_dataset import QADataset | |
from minigpt4.models import * | |
from minigpt4.processors import * | |
from minigpt4.runners import * | |
from minigpt4.tasks import * | |
def parse_args(): | |
parser = argparse.ArgumentParser(description="Training") | |
parser.add_argument("--cfg-path", required=False, help="path to configuration file.", | |
default='configs/train_modality_alignment.yaml') | |
parser.add_argument( | |
"--options", | |
nargs="+", | |
help="override some settings in the used config, the key-value pair " | |
"in xxx=yyy format will be merged into config file (deprecate), " | |
"change to --cfg-options instead.", | |
) | |
args = parser.parse_args() | |
# if 'LOCAL_RANK' not in os.environ: | |
# os.environ['LOCAL_RANK'] = str(args.local_rank) | |
return args | |
def setup_seeds(config): | |
seed = config.run_cfg.seed + get_rank() | |
random.seed(seed) | |
np.random.seed(seed) | |
torch.manual_seed(seed) | |
cudnn.benchmark = False | |
cudnn.deterministic = True | |
def get_runner_class(cfg): | |
""" | |
Get runner class from config. Default to epoch-based runner. | |
""" | |
runner_cls = registry.get_runner_class(cfg.run_cfg.get("runner", "runner_base")) | |
return runner_cls | |
def is_stage_1_training(cfg): | |
return cfg.to_dict()["run"]["stage"] == 1 | |
def main(): | |
# allow auto-dl completes on main process without timeout when using NCCL backend. | |
# os.environ["NCCL_BLOCKING_WAIT"] = "1" | |
# set before init_distributed_mode() to ensure the same job_id shared across all ranks. | |
job_id = now() | |
cfg = Config(parse_args()) | |
init_distributed_mode(cfg.run_cfg) | |
setup_seeds(cfg) | |
# set after init_distributed_mode() to only log on master. | |
setup_logger() | |
cfg.pretty_print() | |
task = tasks.setup_task(cfg) | |
datasets_raw = [] | |
if (is_stage_1_training(cfg)): | |
datasets_raw = ESMDataset(pdb_root="/home/ubuntu/pt/", | |
seq_root="/home/ubuntu/seq/", | |
ann_paths="/home/ubuntu/proteinchat/data/esm_subset/abstract.json", | |
dataset_description="/home/ubuntu/dataset.json", | |
chain="A") | |
else: | |
datasets_raw = QADataset(pdb_root="/home/ubuntu/pt/", | |
seq_root="/home/ubuntu/seq/", | |
# ann_paths="/home/ubuntu/proteinchat/data/esm_subset/qa_all.json", | |
ann_paths="/home/ubuntu/proteinchat/data/esm_subset/GPT_merged_summary.json", | |
# dataset_description="/home/ubuntu/dataset.json", | |
chain="A") | |
datasets = {'esm': {'train': datasets_raw}} | |
model = task.build_model(cfg) | |
runner = get_runner_class(cfg)( | |
cfg=cfg, job_id=job_id, task=task, model=model, datasets=datasets | |
) | |
runner.train() | |
if __name__ == "__main__": | |
main() | |