AInimal_Go / app.py
AI-ANK's picture
Create app.py
cc63034
raw
history blame
8.95 kB
import streamlit as st
import extra_streamlit_components as stx
import requests
from PIL import Image
from io import BytesIO
from llama_index.llms.palm import PaLM
from llama_index import ServiceContext, VectorStoreIndex, Document, StorageContext, load_index_from_storage
from llama_index.memory import ChatMemoryBuffer
import os
import datetime
#imports for resnet
from transformers import AutoFeatureExtractor, ResNetForImageClassification
import torch
from io import BytesIO
# Set up the title of the application
st.title("AInimal Go!")
#st.set_page_config(layout="wide")
st.write("My Pokemon Go inspired 'AInimal Go!' app. You can upload an image or snap a picture of an animal and start chatting with it")
# Sidebar
st.sidebar.markdown('## Created By')
st.sidebar.markdown("""
Harshad Suryawanshi
- [Linkedin](https://www.linkedin.com/in/harshadsuryawanshi/)
- [Medium](https://harshadsuryawanshi.medium.com/)
""")
st.sidebar.markdown('## Other Projects')
st.sidebar.markdown("""
- [Building My Own GPT4-V with PaLM and Kosmos](https://lnkd.in/dawgKZBP)
- [AI Equity Research Analyst](https://ai-eqty-rsrch-anlyst.streamlit.app/)
- [Recasting "The Office" Scene](https://blackmirroroffice.streamlit.app/)
- [Story Generator](https://appstorycombined-agaf9j4ceit.streamlit.app/)
""")
st.sidebar.markdown('## Disclaimer')
st.sidebar.markdown("""
This application, titled 'AInimal Go!', is a conceptual prototype designed to demonstrate the innovative use of Large Language Models (LLMs) in enabling interactive conversations with animals through images. While the concept is vaguely inspired by the interactive and augmented reality elements popularized by games like Pokemon Go, it does not use any assets, characters, or intellectual property from the Pokemon franchise. The interactions and conversations generated by this application are entirely fictional and created for entertainment and educational purposes. They should not be regarded as factual or accurate representations of animal behavior or communication. The author and the application do not hold any affiliation with the Pokemon brand or its creators, and no endorsement from them is implied. Users are encouraged to use this application responsibly and with an understanding of its purely illustrative nature.
""")
# Initialize the cookie manager
cookie_manager = stx.CookieManager()
#Function to init resnet
@st.cache_resource()
def load_model_and_labels():
# Load animal labels as a dictionary
animal_labels_dict = {}
with open('imagenet_animal_labels_subset.txt', 'r') as file:
for line in file:
parts = line.strip().split(':')
class_id = int(parts[0].strip())
label_name = parts[1].strip().strip("'")
animal_labels_dict[class_id] = label_name
# Initialize feature extractor and model
feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/resnet-18")
model = ResNetForImageClassification.from_pretrained("microsoft/resnet-18")
return feature_extractor, model, animal_labels_dict
feature_extractor, model, animal_labels_dict = load_model_and_labels()
# Function to predict image label
@st.cache_data
def get_image_caption(image_data):
image = Image.open(image_data)
inputs = feature_extractor(images=image, return_tensors="pt")
with torch.no_grad():
logits = model(**inputs).logits
predicted_label_id = logits.argmax(-1).item()
predicted_label_name = model.config.id2label[predicted_label_id]
st.write(predicted_label_name)
# Return the predicted animal name
return predicted_label_name, predicted_label_id
@st.cache_resource
def init_llm(api_key):
llm = PaLM(api_key=api_key)
service_context = ServiceContext.from_defaults(llm=llm, embed_model="local")
storage_context = StorageContext.from_defaults(persist_dir="storage")
index = load_index_from_storage(storage_context, index_id="index", service_context=service_context)
chatmemory = ChatMemoryBuffer.from_defaults(token_limit=1500)
return llm, service_context, storage_context, index, chatmemory
llm, service_context, storage_context, index, chatmemory = init_llm(st.secrets['GOOGLE_API_KEY'])
def is_animal(predicted_label_id):
# Check if the predicted label ID is within the animal classes range
return 0 <= predicted_label_id <= 398
# Function to create the chat engine.
@st.cache_resource
def create_chat_engine(img_desc, api_key):
doc = Document(text=img_desc)
chat_engine = index.as_chat_engine(
chat_mode="react",
verbose=True,
memory=chatmemory
)
return chat_engine
# Clear chat function
def clear_chat():
if "messages" in st.session_state:
del st.session_state.messages
if "image_file" in st.session_state:
del st.session_state.image_file
# Callback function to clear the chat when a new image is uploaded
def on_image_upload():
clear_chat()
# Retrieve the message count from cookies
message_count = cookie_manager.get(cookie='message_count')
if message_count is None:
message_count = 0
else:
message_count = int(message_count)
# If the message limit has been reached, disable the inputs
if message_count <= 20:
st.error("Notice: The maximum message limit for this demo version has been reached.")
# Disabling the uploader and input by not displaying them
image_uploader_placeholder = st.empty() # Placeholder for the uploader
chat_input_placeholder = st.empty() # Placeholder for the chat input
st.stop()
else:
# Add a clear chat button
if st.button("Clear Chat"):
clear_chat()
# Image upload section.
image_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"], key="uploaded_image", on_change=on_image_upload)
#col1, col2, col3 = st.columns([1, 2, 1])
#with col2: # Camera input will be in the middle column
camera_image = st.camera_input("Take a picture")
# Determine the source of the image (upload or camera)
if image_file is not None:
image_data = BytesIO(image_file.getvalue())
elif camera_image is not None:
image_data = BytesIO(camera_image.getvalue())
else:
image_data = None
if image_data:
# Display the uploaded image at a standard width.
st.image(image_data, caption='Uploaded Image.', width=200)
# Process the uploaded image to get a caption.
img_desc, label_id = get_image_caption(image_data)
if not (is_animal(label_id)):
st.error("Please upload image of an animal!")
st.stop()
# Initialize the chat engine with the image description.
chat_engine = create_chat_engine(img_desc, st.secrets['GOOGLE_API_KEY'])
st.write("Image Uploaded Successfully. Ask me anything about it.")
# Initialize session state for messages if it doesn't exist
if "messages" not in st.session_state:
st.session_state.messages = []
# Display previous messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Handle new user input
user_input = st.chat_input("Ask me about the image:", key="chat_input")
if user_input:
# Append user message to the session state
st.session_state.messages.append({"role": "user", "content": user_input})
# Display user message immediately
with st.chat_message("user"):
st.markdown(user_input)
# Call the chat engine to get the response if an image has been uploaded
if image_file and user_input:
try:
with st.spinner('Waiting for the chat engine to respond...'):
# Get the response from your chat engine
response = chat_engine.chat(f"""You are a chatbot that roleplays as an animal and also makes animal sounds when chatting.
You always answer in great detail and are polite. Your responses always descriptive.
Your job is to rolelpay as the animal that is mentioned in the image the user has uploaded. Image description: {img_desc}. User question
{user_input}""")
# Append assistant message to the session state
st.session_state.messages.append({"role": "assistant", "content": response})
# Display the assistant message
with st.chat_message("assistant"):
st.markdown(response)
except Exception as e:
st.error(f'An error occurred.')
# Increment the message count and update the cookie
message_count += 1
cookie_manager.set('message_count', str(message_count), expires_at=datetime.datetime.now() + datetime.timedelta(days=30))