Spaces:
Running
Running
| ############################################################################# | |
| # Title: BERUFENET.AI | |
| # Author: Andreas Fischer | |
| # Date: January 4th, 2024 | |
| # Last update: October 15th, 2024 | |
| ############################################################################# | |
| import os | |
| import chromadb | |
| from chromadb import Documents, EmbeddingFunction, Embeddings | |
| from chromadb.utils import embedding_functions | |
| import torch # chromaDB | |
| from transformers import AutoTokenizer, AutoModel # chromaDB | |
| from huggingface_hub import InferenceClient # Gradio-Interface | |
| import gradio as gr # Gradio-Interface | |
| import json # Gradio-Interface | |
| dbPath="/home/af/Schreibtisch/Code/gradio/BERUFENET/db" | |
| if(os.path.exists(dbPath)==False): dbPath="/home/user/app/db" | |
| print(dbPath) | |
| # Chroma-DB | |
| #----------- | |
| jina = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-de', trust_remote_code=True, torch_dtype=torch.bfloat16) | |
| #jira.save_pretrained("jinaai_jina-embeddings-v2-base-de") | |
| device='cuda:0' if torch.cuda.is_available() else 'cpu' | |
| jina.to(device) #cuda:0 | |
| print(device) | |
| class JinaEmbeddingFunction(EmbeddingFunction): | |
| def __call__(self, input: Documents) -> Embeddings: | |
| embeddings = jina.encode(input) #max_length=2048 | |
| return(embeddings.tolist()) | |
| path=dbPath | |
| client = chromadb.PersistentClient(path=path) | |
| print(client.heartbeat()) | |
| print(client.get_version()) | |
| print(client.list_collections()) | |
| #default_ef = embedding_functions.DefaultEmbeddingFunction() | |
| #sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="T-Systems-onsite/cross-en-de-roberta-sentence-transformer") | |
| #instructor_ef = embedding_functions.InstructorEmbeddingFunction(model_name="hkunlp/instructor-large", device="cuda") | |
| jina_ef=JinaEmbeddingFunction() | |
| embeddingFunction=jina_ef | |
| print(str(client.list_collections())) | |
| global collection | |
| if("name=BerufenetDB1" in str(client.list_collections())): | |
| print("BerufenetDB1 found!") | |
| collection = client.get_collection(name="BerufenetDB1", embedding_function=embeddingFunction) | |
| print("Database ready!") | |
| print(collection.count()) | |
| # Gradio-GUI | |
| #------------ | |
| myModel="mistralai/Mixtral-8x7B-Instruct-v0.1" | |
| def format_prompt(message, history): | |
| prompt = "" #"<s>" | |
| #for user_prompt, bot_response in history: | |
| # prompt += f"[INST] {user_prompt} [/INST]" | |
| # prompt += f" {bot_response}</s> " | |
| prompt += f"[INST] {message} [/INST]" | |
| return prompt | |
| def response(prompt, history, hfToken): | |
| inferenceClient="" | |
| if(hfToken.startswith("hf_")): # use HF-hub with custom token if token is provided | |
| inferenceClient = InferenceClient(model=myModel, token=hfToken) | |
| else: | |
| inferenceClient = InferenceClient(myModel) | |
| generate_kwargs = dict(temperature=float(0.9), max_new_tokens=500, top_p=0.95, repetition_penalty=1.0, do_sample=True, seed=42) | |
| addon="" | |
| results=collection.query( | |
| query_texts=[prompt], | |
| n_results=5 | |
| ) | |
| dists=["<br><small>(relevance: "+str(round((1-d)*100)/100)+";" for d in results['distances'][0]] | |
| sources=["source: "+s["source"]+")</small>" for s in results['metadatas'][0]] | |
| results=results['documents'][0] | |
| combination = zip(results,dists,sources) | |
| combination = [' '.join(triplets) for triplets in combination] | |
| print(str(prompt)+"\n\n"+str(combination)) | |
| if(len(results)>1): | |
| addon=" Bitte berücksichtige bei deiner Antwort ggf. folgende Auszüge aus unserer Datenbank, sofern sie für die Antwort erforderlich sind. Beantworte die Frage knapp und präzise. Ignoriere unpassende Datenbank-Auszüge OHNE sie zu kommentieren, zu erwähnen oder aufzulisten:\n"+"\n".join(results) | |
| system="Du bist ein deutschsprachiges KI-basiertes Assistenzsystem, das zu jedem Anliegen möglichst geeignete Berufe empfiehlt."+addon+"\n\nUser-Anliegen:" | |
| formatted_prompt = format_prompt(system+"\n"+prompt, history) | |
| output = "" | |
| print(""+str(inferenceClient)) | |
| try: | |
| stream = inferenceClient.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
| for response in stream: | |
| output += response.token.text | |
| yield output | |
| except Exception as e: | |
| output = "Für weitere Antworten von der KI gebe bitte einen gültigen HuggingFace-Token an." | |
| if(len(combination)>0): | |
| output += "\nBis dahin helfen dir hoffentlich die folgenden Quellen weiter:" | |
| yield output | |
| print(str(e)) | |
| output=output+"\n\n<br><details open><summary><strong>Sources</strong></summary><br><ul>"+ "".join(["<li>" + s + "</li>" for s in combination])+"</ul></details>" | |
| yield output | |
| gr.ChatInterface( | |
| response, | |
| chatbot=gr.Chatbot(value=[[None,"Herzlich willkommen! Ich bin ein KI-basiertes Assistenzsystem, das für jede Anfrage die am besten passenden Berufe empfiehlt.<br>Erzähle mir, was du gerne tust!"]],render_markdown=True), | |
| title="BERUFENET.AI (Jina-Embeddings)", | |
| additional_inputs=[ | |
| gr.Textbox( | |
| value="", | |
| label="HF_token"), | |
| ] | |
| ).queue().launch(share=True) #False, server_name="0.0.0.0", server_port=7864) | |
| print("Interface up and running!") | |