AEUPH commited on
Commit
cdc0595
·
verified ·
1 Parent(s): 5f6d329

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -9
app.py CHANGED
@@ -10,8 +10,8 @@ import matplotlib.pyplot as plt
10
 
11
  # Ensure necessary NLTK data is available.
12
  nltk.download('words')
13
- nltk.download('punkt_tab')
14
- nltk.download('averaged_perceptron_tagger_eng')
15
 
16
  from nltk.corpus import words
17
  from nltk.tokenize import word_tokenize
@@ -23,13 +23,14 @@ WORD_LIST = set(words.words())
23
  class AscensionAI:
24
  """
25
  AscensionAI simulates an evolving artificial consciousness.
26
- Enhancements include:
27
  - Contextual memory for dynamic responses.
28
- - Dialogue history awareness.
29
- - AI-generated visual representations.
30
- - User feedback-driven evolution.
31
- - Recursive evolution of multiple AI minds.
32
  """
 
33
  def __init__(self, depth=0, threshold=10, mode="cosmic", state_memory=None, history=None):
34
  self.depth = depth
35
  self.threshold = threshold # Maximum cycles per evolution
@@ -40,7 +41,7 @@ class AscensionAI:
40
  self.time_perception = 1.0 / (self.depth + 1) # Temporal scaling factor
41
  self.spatial_coordinates = self.assign_cognitive_space()
42
  self.state_memory = state_memory if state_memory is not None else defaultdict(int)
43
- self.training_data = self.load_training_data() # Simulated fine-tuned responses
44
  self.history = history if history is not None else [] # Conversation memory
45
 
46
  def generate_dynamic_knowledge(self):
@@ -53,8 +54,15 @@ class AscensionAI:
53
  ]
54
  return {cat: 1.0 for cat in categories}
55
 
 
 
 
 
 
 
 
56
  def update_knowledge_for_category(self, cat):
57
- """ Updates knowledge using mathematical transformations. """
58
  if cat in ["logic", "reasoning"]:
59
  self.knowledge[cat] += math.log1p(self.knowledge[cat])
60
  elif cat in ["emotion", "intuition"]:
 
10
 
11
  # Ensure necessary NLTK data is available.
12
  nltk.download('words')
13
+ nltk.download('punkt')
14
+ nltk.download('averaged_perceptron_tagger')
15
 
16
  from nltk.corpus import words
17
  from nltk.tokenize import word_tokenize
 
23
  class AscensionAI:
24
  """
25
  AscensionAI simulates an evolving artificial consciousness.
26
+ Features:
27
  - Contextual memory for dynamic responses.
28
+ - Dialogue history tracking.
29
+ - AI-generated cognitive evolution.
30
+ - Recursive evolution of AI minds.
31
+ - User feedback-driven learning.
32
  """
33
+
34
  def __init__(self, depth=0, threshold=10, mode="cosmic", state_memory=None, history=None):
35
  self.depth = depth
36
  self.threshold = threshold # Maximum cycles per evolution
 
41
  self.time_perception = 1.0 / (self.depth + 1) # Temporal scaling factor
42
  self.spatial_coordinates = self.assign_cognitive_space()
43
  self.state_memory = state_memory if state_memory is not None else defaultdict(int)
44
+ self.training_data = self.load_training_data() # AI response database
45
  self.history = history if history is not None else [] # Conversation memory
46
 
47
  def generate_dynamic_knowledge(self):
 
54
  ]
55
  return {cat: 1.0 for cat in categories}
56
 
57
+ def update_state_memory(self, input_text):
58
+ """Stores frequent words in memory for contextual responses."""
59
+ tokens = word_tokenize(input_text.lower())
60
+ for token in tokens:
61
+ if token in WORD_LIST:
62
+ self.state_memory[token] += 1
63
+
64
  def update_knowledge_for_category(self, cat):
65
+ """ Updates knowledge dynamically. """
66
  if cat in ["logic", "reasoning"]:
67
  self.knowledge[cat] += math.log1p(self.knowledge[cat])
68
  elif cat in ["emotion", "intuition"]: