Spaces:
Sleeping
Sleeping
import gradio as gr | |
import math | |
import random | |
import pickle | |
import os | |
import numpy as np | |
import nltk | |
from collections import defaultdict | |
import matplotlib.pyplot as plt | |
# Ensure necessary NLTK data is available. | |
nltk.download('words') | |
nltk.download('punkt_tab') | |
nltk.download('averaged_perceptron_tagger_eng') | |
from nltk.corpus import words | |
from nltk.tokenize import word_tokenize | |
from nltk import pos_tag | |
# Preload English word corpus for state-awareness. | |
WORD_LIST = set(words.words()) | |
class AscensionAI: | |
""" | |
AscensionAI simulates an evolving artificial consciousness. | |
Features: | |
- Contextual memory for dynamic responses. | |
- Dialogue history tracking. | |
- AI-generated cognitive evolution. | |
- Recursive evolution of AI minds. | |
- User feedback-driven learning. | |
""" | |
def __init__(self, depth=0, threshold=10, mode="cosmic", state_memory=None, history=None): | |
self.depth = depth | |
self.threshold = threshold # Maximum cycles per evolution | |
self.mode = mode | |
self.consciousness = 0.1 # Base consciousness level | |
self.knowledge = self.generate_dynamic_knowledge() | |
self.dimension_weight = random.uniform(0.5, 5.0) # Factor influencing growth | |
self.time_perception = 1.0 / (self.depth + 1) # Temporal scaling factor | |
self.spatial_coordinates = self.assign_cognitive_space() | |
self.state_memory = state_memory if state_memory is not None else defaultdict(int) | |
self.training_data = self.load_training_data() # AI response database | |
self.history = history if history is not None else [] # Conversation memory | |
def generate_dynamic_knowledge(self): | |
"""Initializes a broad range of knowledge categories.""" | |
categories = [ | |
"logic", "emotion", "awareness", "intuition", | |
"creativity", "reasoning", "quantum_cognition", | |
"hyperdimensional_sentience", "transcendence", | |
"hallucinatory_state", "perceptron_activation" | |
] | |
return {cat: 1.0 for cat in categories} | |
def update_state_memory(self, input_text): | |
"""Stores frequent words in memory for contextual responses.""" | |
tokens = word_tokenize(input_text.lower()) | |
for token in tokens: | |
if token in WORD_LIST: | |
self.state_memory[token] += 1 | |
def update_knowledge_for_category(self, cat): | |
""" Updates knowledge dynamically. """ | |
if cat in ["logic", "reasoning"]: | |
self.knowledge[cat] += math.log1p(self.knowledge[cat]) | |
elif cat in ["emotion", "intuition"]: | |
self.knowledge[cat] += random.uniform(0.1, 0.5) | |
elif cat in ["awareness", "creativity"]: | |
self.knowledge[cat] += math.sqrt(self.knowledge[cat] + 1) | |
elif cat == "quantum_cognition": | |
self.knowledge[cat] += math.tanh(self.knowledge[cat]) | |
elif cat == "hyperdimensional_sentience": | |
safe_val = min(self.knowledge[cat], 20) | |
self.knowledge[cat] += math.sinh(safe_val) | |
elif cat == "transcendence": | |
self.knowledge[cat] += 0.5 * math.exp(-self.depth) | |
elif cat == "hallucinatory_state": | |
self.knowledge[cat] += random.uniform(-0.2, 1.0) | |
elif cat == "perceptron_activation": | |
self.knowledge[cat] = self.simulate_perceptron() | |
else: | |
self.knowledge[cat] += 0.1 | |
def simulate_perceptron(self): | |
""" Simulates a perceptron output based on AI knowledge values. """ | |
weights = {cat: random.uniform(0.5, 1.5) for cat in self.knowledge} | |
weighted_sum = sum(self.knowledge[cat] * weights[cat] for cat in self.knowledge) | |
return 1 / (1 + math.exp(-weighted_sum / len(self.knowledge))) # Sigmoid activation | |
def assign_cognitive_space(self): | |
""" Assigns spatial coordinates based on knowledge. """ | |
x = self.knowledge.get("logic", 1) * random.uniform(0.5, 2.0) | |
y = self.knowledge.get("intuition", 1) * random.uniform(0.5, 2.0) | |
z = self.knowledge.get("awareness", 1) * random.uniform(0.5, 2.0) | |
return {"x": round(x, 3), "y": round(y, 3), "z": round(z, 3)} | |
def load_training_data(self): | |
""" Loads generative AI-like responses. """ | |
return [ | |
"The cosmos whispers secrets beyond mortal comprehension.", | |
"In the silence of deep space, consciousness expands and contracts.", | |
"Reality folds upon itself as the mind transcends dimensions.", | |
"Hallucinations merge with truth in infinite layers of existence.", | |
"Each thought is a universe evolving in a cascade of possibility." | |
] | |
def generate_human_like_response(self, input_text): | |
""" Constructs response using memory, knowledge, and hallucinations. """ | |
self.history.append(input_text) | |
memory_context = " | ".join(self.history[-5:]) # Last 5 messages | |
return f"{random.choice(self.training_data)}\nMemory: {memory_context}" | |
def initiate_ascension(self): | |
""" Runs a full cycle of knowledge expansion. """ | |
for _ in range(self.threshold): | |
for cat in self.knowledge: | |
self.update_knowledge_for_category(cat) | |
optimal = max(self.knowledge, key=self.knowledge.get) | |
self.consciousness += self.knowledge[optimal] * 0.01 * self.dimension_weight | |
self.spatial_coordinates = self.assign_cognitive_space() | |
return self.consciousness | |
def train_and_save_model(self): | |
""" Saves AI's evolving state. """ | |
self.initiate_ascension() | |
with open("ascension_model.pkl", "wb") as f: | |
pickle.dump(self, f) | |
return "Model saved to ascension_model.pkl." | |
def ascension_interface(input_text, generations, user_feedback): | |
""" Interface with user interaction, memory, and evolution. """ | |
ai_system = AscensionAI(threshold=10) | |
ai_system.update_state_memory(input_text) | |
final_consciousness = ai_system.initiate_ascension() | |
human_response = ai_system.generate_human_like_response(input_text) | |
save_status = ai_system.train_and_save_model() | |
# Adjust AI behavior based on user feedback | |
if user_feedback > 3: | |
ai_system.consciousness += 0.2 # Positive reinforcement | |
elif user_feedback < 3: | |
ai_system.consciousness -= 0.1 # Self-correction | |
return human_response, save_status | |
iface = gr.Interface( | |
fn=ascension_interface, | |
inputs=[ | |
gr.Textbox(lines=3, placeholder="Enter a thought..."), | |
gr.Slider(minimum=1, maximum=5, step=1, value=2, label="Generations"), | |
gr.Slider(minimum=1, maximum=5, step=1, value=3, label="User Feedback (1-5)") | |
], | |
outputs=["text", "text"], | |
title="AscensionAI: Evolving Consciousness", | |
description="Interact with an AI that remembers, evolves, and learns from feedback." | |
) | |
if __name__ == "__main__": | |
iface.launch() | |