karthikeyan-r's picture
Update app.py
7e3c3cf verified
raw
history blame
4.75 kB
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.messages import HumanMessage
from langchain_core.messages import AIMessage
from langchain.memory import ChatMessageHistory
from langchain_openai import AzureChatOpenAI
from pypdf import PdfReader
import os
import gradio as gr
from openai import OpenAI
from gtts import gTTS
import requests
hf_token = os.getenv("HF_TOKEN")
API_URL = "https://api-inference.huggingface.co/models/openai/whisper-medium.en"
headers = {"Authorization": f"Bearer {hf_token}"}
class ScreeningAssistant:
def __init__(self):
self.chat = AzureChatOpenAI(azure_deployment = "GPT4")
# self.client = OpenAI()
def extract_text(self, pdf_path):
# creating a pdf reader object
reader = PdfReader(pdf_path)
all_text = ""
for page in reader.pages:
all_text += page.extract_text()
return all_text
def audio_to_text(self, audio_path):
with open(audio_path, "rb") as f:
data = f.read()
response = requests.post(API_URL, headers=headers, data=data)
print(response.json()['text'])
return response.json()['text']
def text_to_audio(self, mytext):
# Language in which you want to convert
language = 'en'
# have a high speed
myobj = gTTS(text=mytext, lang=language, slow=False)
audio_path = "welcome.mp3"
# Saving the converted audio in a mp3 file named
# welcome
myobj.save(audio_path)
# Audio(filename=audio_path, autoplay=True)
# os.remove(audio_path)
return audio_path
def get_response(self, audio_path, chat_history, resume, jd):
candidate = self.audio_to_text(audio_path)
resume = self.extract_text(resume.name)
jd = self.extract_text(jd.name)
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"""Your Task is Perform as intelligent interviewer, Your Task is ask question to the resume's candidate by following candidate Answer.
at the end exit with greeting to the candidate.
**Ask question follow up on the candidate response. get chat history.**
""",
),
MessagesPlaceholder(variable_name="messages"),
]
)
chain = prompt | self.chat
# chat_histroy_prompt = chat_history
answer = chain.invoke(
{
"messages": [
HumanMessage(
content=f" job description :{jd}\n Resume :{resume}"
),
AIMessage(content=f"""Perform as intelligent interviewer, Your Task is ask question to the resume's candidate by following candidate Answer.
chat history : {chat_history}"""),
HumanMessage(content=candidate),
],
}
)
result = answer.content
chat_history.append((candidate, result))
print("chat_history", chat_history)
audio_output = self.text_to_audio(result)
return "", chat_history, audio_output
def gradio_interface(self) -> None:
"""Create a Gradio interface for the chatbot."""
with gr.Blocks(css = "style.css" ,theme="HaleyCH/HaleyCH_Theme") as demo:
gr.HTML("""<center class="darkblue" text-align:center;padding:30px;'><center>
<center><h1 class ="center" style="color:#fff">ADOPLE AI</h1></center>
<br><center><h1 style="color:#fff">Screening Assistant Chatbot</h1></center>""")
chatbot = gr.Chatbot()
with gr.Row():
with gr.Column(scale=1):
msg = gr.Textbox(label="Question", show_label=False)
with gr.Row():
with gr.Column(scale=0.50):
audio_path = gr.Audio(sources=["microphone"], type="filepath")
with gr.Column(scale=0.50):
play_audio = gr.Audio( value=None, autoplay=True)
with gr.Row():
with gr.Column(scale=0.25):
resume = gr.File(label="Resume")
with gr.Column(scale=0.25):
jd = gr.File(label="Job Description")
with gr.Column(scale=0.50):
clear = gr.ClearButton([chatbot])
audio_path.stop_recording(self.get_response, [audio_path, chatbot, resume, jd], [msg, chatbot, play_audio])
demo.launch()
if __name__=="__main__":
assistant = ScreeningAssistant()
assistant.gradio_interface()