Spaces:
Sleeping
Sleeping
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder | |
from langchain_core.messages import HumanMessage | |
from langchain_core.messages import AIMessage | |
from langchain.memory import ChatMessageHistory | |
from langchain_openai import AzureChatOpenAI | |
from pypdf import PdfReader | |
import os | |
import gradio as gr | |
from openai import OpenAI | |
from gtts import gTTS | |
import requests | |
hf_token = os.getenv("HF_TOKEN") | |
API_URL = "https://api-inference.huggingface.co/models/openai/whisper-medium.en" | |
headers = {"Authorization": f"Bearer {hf_token}"} | |
class ScreeningAssistant: | |
def __init__(self): | |
self.chat = AzureChatOpenAI(azure_deployment = "GPT4") | |
# self.client = OpenAI() | |
def extract_text(self, pdf_path): | |
# creating a pdf reader object | |
reader = PdfReader(pdf_path) | |
all_text = "" | |
for page in reader.pages: | |
all_text += page.extract_text() | |
return all_text | |
def audio_to_text(self, audio_path): | |
with open(audio_path, "rb") as f: | |
data = f.read() | |
response = requests.post(API_URL, headers=headers, data=data) | |
print(response.json()['text']) | |
return response.json()['text'] | |
def text_to_audio(self, mytext): | |
# Language in which you want to convert | |
language = 'en' | |
# have a high speed | |
myobj = gTTS(text=mytext, lang=language, slow=False) | |
audio_path = "welcome.mp3" | |
# Saving the converted audio in a mp3 file named | |
# welcome | |
myobj.save(audio_path) | |
# Audio(filename=audio_path, autoplay=True) | |
# os.remove(audio_path) | |
return audio_path | |
def get_response(self, audio_path, chat_history, resume, jd): | |
candidate = self.audio_to_text(audio_path) | |
resume = self.extract_text(resume.name) | |
jd = self.extract_text(jd.name) | |
prompt = ChatPromptTemplate.from_messages( | |
[ | |
( | |
"system", | |
"""Your Task is Perform as intelligent interviewer, Your Task is ask question to the resume's candidate by following candidate Answer. | |
at the end exit with greeting to the candidate. | |
**Ask question follow up on the candidate response. get chat history.** | |
""", | |
), | |
MessagesPlaceholder(variable_name="messages"), | |
] | |
) | |
chain = prompt | self.chat | |
# chat_histroy_prompt = chat_history | |
answer = chain.invoke( | |
{ | |
"messages": [ | |
HumanMessage( | |
content=f" job description :{jd}\n Resume :{resume}" | |
), | |
AIMessage(content=f"""Perform as intelligent interviewer, Your Task is ask question to the resume's candidate by following candidate Answer. | |
chat history : {chat_history}"""), | |
HumanMessage(content=candidate), | |
], | |
} | |
) | |
result = answer.content | |
chat_history.append((candidate, result)) | |
print("chat_history", chat_history) | |
audio_output = self.text_to_audio(result) | |
return "", chat_history, audio_output | |
def gradio_interface(self) -> None: | |
"""Create a Gradio interface for the chatbot.""" | |
with gr.Blocks(css = "style.css" ,theme="HaleyCH/HaleyCH_Theme") as demo: | |
gr.HTML("""<center class="darkblue" text-align:center;padding:30px;'><center> | |
<center><h1 class ="center" style="color:#fff">ADOPLE AI</h1></center> | |
<br><center><h1 style="color:#fff">Screening Assistant Chatbot</h1></center>""") | |
chatbot = gr.Chatbot() | |
with gr.Row(): | |
with gr.Column(scale=1): | |
msg = gr.Textbox(label="Question", show_label=False) | |
with gr.Row(): | |
with gr.Column(scale=0.50): | |
audio_path = gr.Audio(sources=["microphone"], type="filepath") | |
with gr.Column(scale=0.50): | |
play_audio = gr.Audio( value=None, autoplay=True) | |
with gr.Row(): | |
with gr.Column(scale=0.25): | |
resume = gr.File(label="Resume") | |
with gr.Column(scale=0.25): | |
jd = gr.File(label="Job Description") | |
with gr.Column(scale=0.50): | |
clear = gr.ClearButton([chatbot]) | |
audio_path.stop_recording(self.get_response, [audio_path, chatbot, resume, jd], [msg, chatbot, play_audio]) | |
demo.launch() | |
if __name__=="__main__": | |
assistant = ScreeningAssistant() | |
assistant.gradio_interface() |