Karthikeyan commited on
Commit
a62130b
·
1 Parent(s): 873cb4b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -13
app.py CHANGED
@@ -25,8 +25,8 @@ class SentimentAnalyzer:
25
  sentiment_scores_str = f"Positive: {sentiment_scores['positive']:.2f}, Neutral: {sentiment_scores['neutral']:.2f}, Negative: {sentiment_scores['negative']:.2f}"
26
  return sentiment_scores_str
27
  def emotion_analysis(self,text):
28
- prompt = f""" Your task is find the top 1 emotion : <Sadness, Happiness, Joy, Fear, Disgust, Anger> and it's emotion score of the text.\
29
- your are analyze the text and provide the output in the following format: emotion: score [with top 1 result having the highest score]
30
  The scores should be in the range of 0.0 to 1.0, where 1.0 represents the highest intensity of the emotion.\
31
  analyze the text : '''{text}'''
32
  """
@@ -55,16 +55,16 @@ class SentimentAnalyzer:
55
  }
56
  return sentiment_scores
57
 
58
- def emotion_analysis_for_graph(self,text):
59
 
60
- list_of_emotion=text.split(":")
61
- label=list_of_emotion[0]
62
- score=list_of_emotion[1]
63
- score_dict={
64
- label:float(score)
65
- }
66
- print(score_dict)
67
- return score_dict
68
 
69
 
70
  class Summarizer:
@@ -154,11 +154,12 @@ class LangChain_Document_QA:
154
  except:
155
  pass
156
 
157
- prompt = f"""As an empathic AI Mental Healthcare Doctor Chatbot, provide effective solutions to patients' mental health concerns.
158
  first start the conversation ask existing patient or new patient. if new patient get name,age,gender,contact,address from the patient and start.
159
  if existing customer get name,age,gender,contact,address details and start the chat about existing issues and current issues.
160
  if patient say thanking tone message to end the conversation with a thanking greeting when the patient expresses gratitude.
161
  Analyse the patient json If asked for information take it from {patient_details}
 
162
  Chat History:[{history}]
163
  Patient: [{text}]
164
  Perform as Mental Healthcare Doctor Chatbot
@@ -264,7 +265,7 @@ class LangChain_Document_QA:
264
  emptyBtn.click(self.clear_func,[],[])
265
  emptyBtn.click(lambda: None, None, chatbot, queue=False)
266
 
267
- Sentiment_btn.click(self._on_sentiment_btn_click,[],[txt5,plot,plot_3])
268
 
269
  demo.title = "AI Mental Healthcare ChatBot"
270
  demo.launch()
 
25
  sentiment_scores_str = f"Positive: {sentiment_scores['positive']:.2f}, Neutral: {sentiment_scores['neutral']:.2f}, Negative: {sentiment_scores['negative']:.2f}"
26
  return sentiment_scores_str
27
  def emotion_analysis(self,text):
28
+ prompt = f""" Your task is find the top 3 emotion : <Sadness, Happiness, Joy, Fear, Disgust, Anger> and it's emotion score of the text.\
29
+ your are analyze the text and provide the output in the following format: \{emotions: scores\} [with top 3 result having the highest score]
30
  The scores should be in the range of 0.0 to 1.0, where 1.0 represents the highest intensity of the emotion.\
31
  analyze the text : '''{text}'''
32
  """
 
55
  }
56
  return sentiment_scores
57
 
58
+ # def emotion_analysis_for_graph(self,text):
59
 
60
+ # list_of_emotion=text.split(":")
61
+ # label=list_of_emotion[0]
62
+ # score=list_of_emotion[1]
63
+ # score_dict={
64
+ # label:float(score)
65
+ # }
66
+ # print(score_dict)
67
+ # return score_dict
68
 
69
 
70
  class Summarizer:
 
154
  except:
155
  pass
156
 
157
+ prompt = f"""As an empathic AI Mental Healthcare Doctor Chatbot, provide effective solutions to patients' mental health concerns. \
158
  first start the conversation ask existing patient or new patient. if new patient get name,age,gender,contact,address from the patient and start.
159
  if existing customer get name,age,gender,contact,address details and start the chat about existing issues and current issues.
160
  if patient say thanking tone message to end the conversation with a thanking greeting when the patient expresses gratitude.
161
  Analyse the patient json If asked for information take it from {patient_details}
162
+ you first get patient details : <get name,age,gender,contact,address from patient> if not match patient json information start new chat else match patient json information ask previous: <description,symptoms,diagnosis,treatment talk about patient>
163
  Chat History:[{history}]
164
  Patient: [{text}]
165
  Perform as Mental Healthcare Doctor Chatbot
 
265
  emptyBtn.click(self.clear_func,[],[])
266
  emptyBtn.click(lambda: None, None, chatbot, queue=False)
267
 
268
+ Sentiment_btn.click(self._on_sentiment_btn_click,[],[txt5])
269
 
270
  demo.title = "AI Mental Healthcare ChatBot"
271
  demo.launch()