ADKU's picture
Update app.py
cf496f0 verified
raw
history blame
6.53 kB
import os
import faiss
import numpy as np
from rank_bm25 import BM25Okapi
import torch
import pandas as pd
import gradio as gr
from transformers import AutoTokenizer, AutoModel, GPT2LMHeadModel, GPT2Tokenizer
# Set cache directory for Hugging Face models
os.environ["HF_HOME"] = "/tmp/huggingface"
# Load dataset
DATASET_PATH = os.path.join(os.getcwd(), "springer_papers_DL.json")
if not os.path.exists(DATASET_PATH):
raise FileNotFoundError(f"Dataset file not found at {DATASET_PATH}")
df = pd.read_json(DATASET_PATH)
# Clean text
def clean_text(text):
return text.strip().lower()
df["cleaned_abstract"] = df["abstract"].apply(clean_text)
# Precompute BM25 Index
tokenized_corpus = [paper.split() for paper in df["cleaned_abstract"]]
bm25 = BM25Okapi(tokenized_corpus)
# Load SciBERT for embeddings (preloaded globally)
sci_bert_tokenizer = AutoTokenizer.from_pretrained("allenai/scibert_scivocab_uncased", cache_dir="/tmp/huggingface")
sci_bert_model = AutoModel.from_pretrained("allenai/scibert_scivocab_uncased", cache_dir="/tmp/huggingface")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
sci_bert_model.to(device)
sci_bert_model.eval()
# Load GPT-2 for QA (using distilgpt2 for efficiency)
gpt2_tokenizer = GPT2Tokenizer.from_pretrained("distilgpt2", cache_dir="/tmp/huggingface")
gpt2_model = GPT2LMHeadModel.from_pretrained("distilgpt2", cache_dir="/tmp/huggingface")
gpt2_model.to(device)
gpt2_model.eval()
# Generate SciBERT embeddings
def generate_embeddings_sci_bert(texts, batch_size=32):
all_embeddings = []
for i in range(0, len(texts), batch_size):
batch = texts[i:i + batch_size]
inputs = sci_bert_tokenizer(batch, return_tensors="pt", padding=True, truncation=True, max_length=512)
inputs = {key: val.to(device) for key, val in inputs.items()}
with torch.no_grad():
outputs = sci_bert_model(**inputs)
embeddings = outputs.last_hidden_state.mean(dim=1)
all_embeddings.append(embeddings.cpu().numpy())
torch.cuda.empty_cache()
return np.concatenate(all_embeddings, axis=0)
# Precompute embeddings and FAISS index
abstracts = df["cleaned_abstract"].tolist()
embeddings = generate_embeddings_sci_bert(abstracts)
dimension = embeddings.shape[1]
faiss_index = faiss.IndexFlatL2(dimension)
faiss_index.add(embeddings.astype(np.float32))
# Hybrid search function
def get_relevant_papers(query, top_k=5):
if not query.strip():
return []
query_embedding = generate_embeddings_sci_bert([query])
distances, indices = faiss_index.search(query_embedding.astype(np.float32), top_k)
tokenized_query = query.split()
bm25_scores = bm25.get_scores(tokenized_query)
bm25_top_indices = np.argsort(bm25_scores)[::-1][:top_k]
combined_indices = list(set(indices[0]) | set(bm25_top_indices))
ranked_results = sorted(combined_indices, key=lambda idx: -bm25_scores[idx])
papers = []
for i, index in enumerate(ranked_results[:top_k]):
paper = df.iloc[index]
papers.append(f"{i+1}. {paper['title']} - Abstract: {paper['cleaned_abstract'][:200]}...")
return papers
# GPT-2 QA function
def answer_question(paper, question, history):
if not question.strip():
return "Please ask a question!", history
if question.lower() in ["exit", "done"]:
return "Conversation ended. Select a new paper or search again!", []
# Extract title and abstract from paper string
title = paper.split(" - Abstract: ")[0].split(". ", 1)[1]
abstract = paper.split(" - Abstract: ")[1].rstrip("...")
# Build context with history
context = f"Title: {title}\nAbstract: {abstract}\n\nPrevious conversation:\n"
for user_q, bot_a in history:
context += f"User: {user_q}\nAssistant: {bot_a}\n"
context += f"User: {question}\nAssistant: "
# Generate response
inputs = gpt2_tokenizer(context, return_tensors="pt", truncation=True, max_length=512)
inputs = {key: val.to(device) for key, val in inputs.items()}
with torch.no_grad():
outputs = gpt2_model.generate(
inputs["input_ids"],
max_new_tokens=100,
do_sample=True,
temperature=0.7,
top_k=50,
pad_token_id=gpt2_tokenizer.eos_token_id
)
response = gpt2_tokenizer.decode(outputs[0], skip_special_tokens=True)
response = response[len(context):].strip()
history.append((question, response))
return response, history
# Gradio UI
with gr.Blocks(
css="""
.chatbot {height: 600px; overflow-y: auto;}
.sidebar {width: 300px;}
#main {display: flex; flex-direction: row;}
""",
theme=gr.themes.Default(primary_hue="blue")
) as demo:
gr.Markdown("# ResearchGPT - Paper Search & Chat")
with gr.Row(elem_id="main"):
# Sidebar for search
with gr.Column(scale=1, min_width=300, elem_classes="sidebar"):
gr.Markdown("### Search Papers")
query_input = gr.Textbox(label="Enter your search query", placeholder="e.g., machine learning in healthcare")
search_btn = gr.Button("Search")
paper_dropdown = gr.Dropdown(label="Select a Paper", choices=[], interactive=True)
search_btn.click(
fn=get_relevant_papers,
inputs=query_input,
outputs=paper_dropdown
)
# Main chat area
with gr.Column(scale=3):
gr.Markdown("### Chat with Selected Paper")
selected_paper = gr.Textbox(label="Selected Paper", interactive=False)
chatbot = gr.Chatbot(label="Conversation", elem_classes="chatbot")
question_input = gr.Textbox(label="Ask a question", placeholder="e.g., What methods are used?")
chat_btn = gr.Button("Send")
# State to store conversation history
history_state = gr.State([])
# Update selected paper
paper_dropdown.change(
fn=lambda x: x,
inputs=paper_dropdown,
outputs=selected_paper
)
# Handle chat
chat_btn.click(
fn=answer_question,
inputs=[selected_paper, question_input, history_state],
outputs=[chatbot, history_state],
_js="() => {document.querySelector('.chatbot').scrollTop = document.querySelector('.chatbot').scrollHeight;}"
)
# Launch the app
demo.launch()