|
import os |
|
|
|
import librosa.display as lbd |
|
import matplotlib.pyplot as plt |
|
import soundfile |
|
import torch |
|
|
|
from InferenceInterfaces.InferenceArchitectures.InferenceFastSpeech2 import FastSpeech2 |
|
from InferenceInterfaces.InferenceArchitectures.InferenceHiFiGAN import HiFiGANGenerator |
|
from Preprocessing.ArticulatoryCombinedTextFrontend import ArticulatoryCombinedTextFrontend |
|
from Preprocessing.ArticulatoryCombinedTextFrontend import get_language_id |
|
from Preprocessing.ProsodicConditionExtractor import ProsodicConditionExtractor |
|
|
|
|
|
class Meta_FastSpeech2(torch.nn.Module): |
|
|
|
def __init__(self, device="cpu"): |
|
super().__init__() |
|
model_name = "Meta" |
|
language = "en" |
|
self.device = device |
|
self.text2phone = ArticulatoryCombinedTextFrontend(language=language, add_silence_to_end=True) |
|
checkpoint = torch.load(os.path.join("Models", f"FastSpeech2_{model_name}", "best.pt"), map_location='cpu') |
|
self.phone2mel = FastSpeech2(weights=checkpoint["model"]).to(torch.device(device)) |
|
self.mel2wav = HiFiGANGenerator(path_to_weights=os.path.join("Models", "HiFiGAN_combined", "best.pt")).to(torch.device(device)) |
|
self.default_utterance_embedding = checkpoint["default_emb"].to(self.device) |
|
self.phone2mel.eval() |
|
self.mel2wav.eval() |
|
self.lang_id = get_language_id(language) |
|
self.to(torch.device(device)) |
|
|
|
def set_utterance_embedding(self, path_to_reference_audio): |
|
wave, sr = soundfile.read(path_to_reference_audio) |
|
self.default_utterance_embedding = ProsodicConditionExtractor(sr=sr).extract_condition_from_reference_wave(wave).to(self.device) |
|
|
|
def set_phonemizer_language(self, lang_id): |
|
""" |
|
The id parameter actually refers to the shorthand. This has become ambiguous with the introduction of the actual language IDs |
|
""" |
|
self.text2phone = ArticulatoryCombinedTextFrontend(language=lang_id, add_silence_to_end=True, silent=False) |
|
|
|
def set_accent_language(self, lang_id): |
|
""" |
|
The id parameter actually refers to the shorthand. This has become ambiguous with the introduction of the actual language IDs |
|
""" |
|
self.lang_id = get_language_id(lang_id).to(self.device) |
|
|
|
def forward(self, text, view=False, durations=None, pitch=None, energy=None): |
|
with torch.no_grad(): |
|
phones = self.text2phone.string_to_tensor(text, input_phonemes=True).to(torch.device(self.device)) |
|
mel, durations, pitch, energy = self.phone2mel(phones, |
|
return_duration_pitch_energy=True, |
|
utterance_embedding=self.default_utterance_embedding, |
|
durations=durations, |
|
pitch=pitch, |
|
energy=energy, |
|
lang_id=self.lang_id) |
|
mel = mel.transpose(0, 1) |
|
wave = self.mel2wav(mel) |
|
if view: |
|
from Utility.utils import cumsum_durations |
|
fig, ax = plt.subplots(nrows=2, ncols=1) |
|
ax[0].plot(wave.cpu().numpy()) |
|
lbd.specshow(mel.cpu().numpy(), |
|
ax=ax[1], |
|
sr=16000, |
|
cmap='GnBu', |
|
y_axis='mel', |
|
x_axis=None, |
|
hop_length=256) |
|
ax[0].yaxis.set_visible(False) |
|
ax[1].yaxis.set_visible(False) |
|
duration_splits, label_positions = cumsum_durations(durations.cpu().numpy()) |
|
ax[1].set_xticks(duration_splits, minor=True) |
|
ax[1].xaxis.grid(True, which='minor') |
|
ax[1].set_xticks(label_positions, minor=False) |
|
ax[1].set_xticklabels(self.text2phone.get_phone_string(text)) |
|
ax[0].set_title(text) |
|
plt.subplots_adjust(left=0.05, bottom=0.1, right=0.95, top=.9, wspace=0.0, hspace=0.0) |
|
plt.show() |
|
return wave |
|
|