ModelSmith-AI / backend /experiments /run_benchmarks.py
ACA050's picture
Upload 79 files
a309487 verified
import pandas as pd
from benchmark_runner import BenchmarkRunner
import sys
import os
sys.path.append(os.path.join(os.path.dirname(__file__), '..', '..'))
from backend.core.orchestrator import Orchestrator
# Load datasets
datasets = {
"titanic": (pd.read_csv(os.path.join(os.path.dirname(__file__), '..', '..', 'datasets', 'real_world', 'titanic.csv')), "Survived"),
"credit_default": (pd.read_csv(os.path.join(os.path.dirname(__file__), '..', '..', 'datasets', 'real_world', 'credit_default.csv')), "default.payment.next.month"),
"house_prices": (pd.read_csv(os.path.join(os.path.dirname(__file__), '..', '..', 'datasets', 'real_world', 'house_prices.csv')), "Price"),
"telecom_churn": (pd.read_csv(os.path.join(os.path.dirname(__file__), '..', '..', 'datasets', 'real_world', 'telecom_churn.csv')), "Churn"),
"news_classification": (pd.read_csv(os.path.join(os.path.dirname(__file__), '..', '..', 'datasets', 'real_world', 'news_classification.csv')), "label"),
}
orchestrator = Orchestrator()
runner = BenchmarkRunner()
results = runner.run(orchestrator, datasets)
print("Benchmark Results:")
for result in results:
print(result)
# Save results to file
with open("experiments/benchmark_results.json", "w") as f:
import json
json.dump(results, f, indent=4)