|
import argparse
|
|
from PIL import Image
|
|
import os
|
|
import numpy as np
|
|
import itertools
|
|
|
|
class ImageProcessor:
|
|
|
|
def __init__(self, input_folder, min_group, max_group, include_subfolders, pad):
|
|
self.input_folder = input_folder
|
|
self.min_group = min_group
|
|
self.max_group = max_group
|
|
self.include_subfolders = include_subfolders
|
|
self.pad = pad
|
|
self.image_extensions = ('.png', '.jpg', '.jpeg', '.gif', '.webp')
|
|
self.losses = []
|
|
|
|
def get_image_paths(self):
|
|
images = []
|
|
if self.include_subfolders:
|
|
for dirpath, dirnames, filenames in os.walk(self.input_folder):
|
|
for filename in filenames:
|
|
if filename.endswith(self.image_extensions):
|
|
images.append(os.path.join(dirpath, filename))
|
|
else:
|
|
images = [os.path.join(self.input_folder, f) for f in os.listdir(self.input_folder) if f.endswith(self.image_extensions)]
|
|
return images
|
|
|
|
def group_images(self, images, group_size):
|
|
sorted_images = sorted(images, key=lambda path: Image.open(path).size[0] / Image.open(path).size[1])
|
|
groups = [sorted_images[i:i+group_size] for i in range(0, len(sorted_images), group_size)]
|
|
return groups
|
|
|
|
def process_group(self, group):
|
|
if len(group) > 0:
|
|
aspect_ratios = self.get_aspect_ratios(group)
|
|
avg_aspect_ratio = np.mean(aspect_ratios)
|
|
self.calculate_losses(group, avg_aspect_ratio)
|
|
|
|
def get_aspect_ratios(self, group):
|
|
aspect_ratios = []
|
|
for path in group:
|
|
with Image.open(path) as img:
|
|
width, height = img.size
|
|
aspect_ratios.append(width / height)
|
|
return aspect_ratios
|
|
|
|
def calculate_losses(self, group, avg_aspect_ratio):
|
|
for j, path in enumerate(group):
|
|
with Image.open(path) as img:
|
|
loss = self.calculate_loss(img, avg_aspect_ratio)
|
|
self.losses.append((path, loss))
|
|
|
|
def calculate_loss(self, img, avg_aspect_ratio):
|
|
img_aspect_ratio = img.width / img.height
|
|
if img_aspect_ratio > avg_aspect_ratio:
|
|
|
|
new_width = avg_aspect_ratio * img.height
|
|
loss = abs(img.width - new_width) / img.width
|
|
else:
|
|
|
|
new_height = img.width / avg_aspect_ratio
|
|
loss = abs(img.height - new_height) / img.height
|
|
return loss
|
|
|
|
def monte_carlo_optimization(self, groups):
|
|
best_groups = groups.copy()
|
|
best_loss = np.inf
|
|
best_removed_images = []
|
|
|
|
for group in groups:
|
|
num_images = len(group)
|
|
all_combinations = []
|
|
|
|
for r in range(1, num_images + 1):
|
|
combinations = list(itertools.combinations(group, r))
|
|
all_combinations.extend(combinations)
|
|
|
|
for combination in all_combinations:
|
|
self.losses = []
|
|
remaining_images = list(set(group) - set(combination))
|
|
self.process_group(remaining_images)
|
|
avg_loss = np.mean(self.losses)
|
|
|
|
if avg_loss < best_loss:
|
|
best_loss = avg_loss
|
|
best_groups[best_groups.index(group)] = remaining_images
|
|
best_removed_images = combination
|
|
|
|
return best_groups, best_loss, best_removed_images
|
|
|
|
def process_images(self):
|
|
images = self.get_image_paths()
|
|
num_images = len(images)
|
|
results = []
|
|
|
|
for group_size in range(self.min_group, self.max_group + 1):
|
|
groups = self.group_images(images, group_size)
|
|
optimized_groups, avg_loss, removed_images = self.monte_carlo_optimization(groups)
|
|
num_remaining = num_images % group_size
|
|
|
|
results.append((group_size, avg_loss, num_remaining, optimized_groups, removed_images))
|
|
|
|
|
|
sorted_results = sorted(results, key=lambda x: x[1])
|
|
|
|
for group_size, avg_loss, num_remaining, optimized_groups, removed_images in sorted_results:
|
|
print(f"Group size: {group_size}, Average crop loss: {avg_loss}, Number of images remaining: {num_remaining}")
|
|
print(f"Optimized Groups: {optimized_groups}")
|
|
print(f"Removed Images: {removed_images}")
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(description='Process groups of images.')
|
|
parser.add_argument('input_folder', type=str, help='Input folder containing images')
|
|
parser.add_argument('min_group', type=int, help='Minimum group size')
|
|
parser.add_argument('max_group', type=int, help='Maximum group size')
|
|
parser.add_argument('--include_subfolders', action='store_true', help='Include subfolders in search for images')
|
|
parser.add_argument('--pad', action='store_true', help='Pad images instead of cropping them')
|
|
|
|
args = parser.parse_args()
|
|
|
|
processor = ImageProcessor(args.input_folder, args.min_group, args.max_group, args.include_subfolders, args.pad)
|
|
processor.process_images()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|
|
|