kohya_ss / tools /group_images_recommended_size.py
ABCCCYYY's picture
Upload folder using huggingface_hub
cff1674 verified
import argparse
from PIL import Image
import os
import numpy as np
import itertools
class ImageProcessor:
def __init__(self, input_folder, min_group, max_group, include_subfolders, pad):
self.input_folder = input_folder
self.min_group = min_group
self.max_group = max_group
self.include_subfolders = include_subfolders
self.pad = pad
self.image_extensions = ('.png', '.jpg', '.jpeg', '.gif', '.webp')
self.losses = [] # List to store loss values for each image
def get_image_paths(self):
images = []
if self.include_subfolders:
for dirpath, dirnames, filenames in os.walk(self.input_folder):
for filename in filenames:
if filename.endswith(self.image_extensions):
images.append(os.path.join(dirpath, filename))
else:
images = [os.path.join(self.input_folder, f) for f in os.listdir(self.input_folder) if f.endswith(self.image_extensions)]
return images
def group_images(self, images, group_size):
sorted_images = sorted(images, key=lambda path: Image.open(path).size[0] / Image.open(path).size[1])
groups = [sorted_images[i:i+group_size] for i in range(0, len(sorted_images), group_size)]
return groups
def process_group(self, group):
if len(group) > 0:
aspect_ratios = self.get_aspect_ratios(group)
avg_aspect_ratio = np.mean(aspect_ratios)
self.calculate_losses(group, avg_aspect_ratio)
def get_aspect_ratios(self, group):
aspect_ratios = []
for path in group:
with Image.open(path) as img:
width, height = img.size
aspect_ratios.append(width / height)
return aspect_ratios
def calculate_losses(self, group, avg_aspect_ratio):
for j, path in enumerate(group):
with Image.open(path) as img:
loss = self.calculate_loss(img, avg_aspect_ratio)
self.losses.append((path, loss)) # Add (path, loss) tuple to the list
def calculate_loss(self, img, avg_aspect_ratio):
img_aspect_ratio = img.width / img.height
if img_aspect_ratio > avg_aspect_ratio:
# Too wide, reduce width
new_width = avg_aspect_ratio * img.height
loss = abs(img.width - new_width) / img.width # Calculate loss value
else:
# Too tall, reduce height
new_height = img.width / avg_aspect_ratio
loss = abs(img.height - new_height) / img.height # Calculate loss value
return loss
def monte_carlo_optimization(self, groups):
best_groups = groups.copy()
best_loss = np.inf
best_removed_images = []
for group in groups:
num_images = len(group)
all_combinations = []
# Generate all possible combinations of images to remove
for r in range(1, num_images + 1):
combinations = list(itertools.combinations(group, r))
all_combinations.extend(combinations)
for combination in all_combinations:
self.losses = [] # Reset losses for each combination
remaining_images = list(set(group) - set(combination))
self.process_group(remaining_images)
avg_loss = np.mean(self.losses)
if avg_loss < best_loss:
best_loss = avg_loss
best_groups[best_groups.index(group)] = remaining_images
best_removed_images = combination
return best_groups, best_loss, best_removed_images
def process_images(self):
images = self.get_image_paths()
num_images = len(images)
results = []
for group_size in range(self.min_group, self.max_group + 1):
groups = self.group_images(images, group_size)
optimized_groups, avg_loss, removed_images = self.monte_carlo_optimization(groups)
num_remaining = num_images % group_size
results.append((group_size, avg_loss, num_remaining, optimized_groups, removed_images))
# Sort results based on average crop loss in ascending order
sorted_results = sorted(results, key=lambda x: x[1])
for group_size, avg_loss, num_remaining, optimized_groups, removed_images in sorted_results:
print(f"Group size: {group_size}, Average crop loss: {avg_loss}, Number of images remaining: {num_remaining}")
print(f"Optimized Groups: {optimized_groups}")
print(f"Removed Images: {removed_images}")
def main():
parser = argparse.ArgumentParser(description='Process groups of images.')
parser.add_argument('input_folder', type=str, help='Input folder containing images')
parser.add_argument('min_group', type=int, help='Minimum group size')
parser.add_argument('max_group', type=int, help='Maximum group size')
parser.add_argument('--include_subfolders', action='store_true', help='Include subfolders in search for images')
parser.add_argument('--pad', action='store_true', help='Pad images instead of cropping them')
args = parser.parse_args()
processor = ImageProcessor(args.input_folder, args.min_group, args.max_group, args.include_subfolders, args.pad)
processor.process_images()
if __name__ == "__main__":
main()