ABCASDFG98765432 commited on
Commit
d83b3a8
·
1 Parent(s): 658974f

Update index.js

Browse files
Files changed (1) hide show
  1. index.js +54 -76
index.js CHANGED
@@ -1,79 +1,57 @@
1
- import { pipeline, env } from 'https://cdn.jsdelivr.net/npm/@xenova/transformers@2.9.0';
2
-
3
- // Since we will download the model from the Hugging Face Hub, we can skip the local model check
4
- env.allowLocalModels = false;
5
-
6
- // Reference the elements that we will need
7
- const status = document.getElementById('status');
8
- const fileUpload = document.getElementById('upload');
9
- const imageContainer = document.getElementById('container');
10
- const example = document.getElementById('example');
11
-
12
- const EXAMPLE_URL = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/city-streets.jpg';
13
-
14
- // Create a new object detection pipeline
15
- status.textContent = 'Loading model...';
16
- const detector = await pipeline('object-detection', 'Xenova/detr-resnet-50');
17
- status.textContent = 'Ready';
18
-
19
- example.addEventListener('click', (e) => {
20
- e.preventDefault();
21
- detect(EXAMPLE_URL);
22
- });
23
-
24
- fileUpload.addEventListener('change', function (e) {
25
- const file = e.target.files[0];
26
- if (!file) {
27
- return;
28
  }
29
-
30
- const reader = new FileReader();
31
-
32
- // Set up a callback when the file is loaded
33
- reader.onload = e2 => detect(e2.target.result);
34
-
35
- reader.readAsDataURL(file);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
  });
37
 
38
-
39
- // Detect objects in the image
40
- async function detect(img) {
41
- imageContainer.innerHTML = '';
42
- imageContainer.style.backgroundImage = `url(${img})`;
43
-
44
- status.textContent = 'Analysing...';
45
- const output = await detector(img, {
46
- threshold: 0.5,
47
- percentage: true,
48
- });
49
- status.textContent = '';
50
- output.forEach(renderBox);
51
- }
52
-
53
- // Render a bounding box and label on the image
54
- function renderBox({ box, label }) {
55
- const { xmax, xmin, ymax, ymin } = box;
56
-
57
- // Generate a random color for the box
58
- const color = '#' + Math.floor(Math.random() * 0xFFFFFF).toString(16).padStart(6, 0);
59
-
60
- // Draw the box
61
- const boxElement = document.createElement('div');
62
- boxElement.className = 'bounding-box';
63
- Object.assign(boxElement.style, {
64
- borderColor: color,
65
- left: 100 * xmin + '%',
66
- top: 100 * ymin + '%',
67
- width: 100 * (xmax - xmin) + '%',
68
- height: 100 * (ymax - ymin) + '%',
69
- })
70
-
71
- // Draw label
72
- const labelElement = document.createElement('span');
73
- labelElement.textContent = label;
74
- labelElement.className = 'bounding-box-label';
75
- labelElement.style.backgroundColor = color;
76
-
77
- boxElement.appendChild(labelElement);
78
- imageContainer.appendChild(boxElement);
79
- }
 
1
+ const http = require('http');
2
+ const querystring = require('querystring');
3
+ const url = require('url');
4
+
5
+ class MyClassificationPipeline {
6
+ static task = 'text-classification';
7
+ static model = 'Xenova/distilbert-base-uncased-finetuned-sst-2-english';
8
+ static instance = null;
9
+
10
+ static async getInstance(progress_callback = null) {
11
+ if (this.instance === null) {
12
+ // Dynamically import the Transformers.js library
13
+ let { pipeline, env } = await import('@xenova/transformers');
14
+
15
+ // NOTE: Uncomment this to change the cache directory
16
+ // env.cacheDir = './.cache';
17
+
18
+ this.instance = pipeline(this.task, this.model, { progress_callback });
19
+ }
20
+
21
+ return this.instance;
 
 
 
 
 
 
22
  }
23
+ }
24
+
25
+ // Define the HTTP server
26
+ const server = http.createServer();
27
+ const hostname = '127.0.0.1';
28
+ const port = 3000;
29
+
30
+ // Listen for requests made to the server
31
+ server.on('request', async (req, res) => {
32
+ // Parse the request URL
33
+ const parsedUrl = url.parse(req.url);
34
+
35
+ // Extract the query parameters
36
+ const { text } = querystring.parse(parsedUrl.query);
37
+
38
+ // Set the response headers
39
+ res.setHeader('Content-Type', 'application/json');
40
+
41
+ let response;
42
+ if (parsedUrl.pathname === '/classify' && text) {
43
+ const classifier = await MyClassificationPipeline.getInstance();
44
+ response = await classifier(text);
45
+ res.statusCode = 200;
46
+ } else {
47
+ response = { 'error': 'Bad request' }
48
+ res.statusCode = 400;
49
+ }
50
+
51
+ // Send the JSON response
52
+ res.end(JSON.stringify(response));
53
  });
54
 
55
+ server.listen(port, hostname, () => {
56
+ console.log(`Server running at http://${hostname}:${port}/`);
57
+ });