Sean-Case
Init repo
49e32ea
raw
history blame
15.6 kB
# ---
# jupyter:
# jupytext:
# formats: ipynb,py:light
# text_representation:
# extension: .py
# format_name: light
# format_version: '1.5'
# jupytext_version: 1.14.6
# kernelspec:
# display_name: Python 3 (ipykernel)
# language: python
# name: python3
# ---
# # Ingest website to FAISS
# ## Install/ import stuff we need
import os
from pathlib import Path
import re
import requests
import pandas as pd
import dateutil.parser
from typing import TypeVar, List
from langchain.embeddings import HuggingFaceInstructEmbeddings, HuggingFaceEmbeddings
from langchain.vectorstores.faiss import FAISS
from langchain.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.docstore.document import Document
from bs4 import BeautifulSoup
from docx import Document as Doc
from pypdf import PdfReader
PandasDataFrame = TypeVar('pd.core.frame.DataFrame')
# -
split_strat = ["\n\n", "\n", ".", "!", "?", ","]
chunk_size = 500
chunk_overlap = 0
start_index = True
## Parse files
def parse_file(file_paths, div:str = "p"):
"""
Accepts a list of file paths, determines each file's type based on its extension,
and passes it to the relevant parsing function.
Parameters:
file_paths (list): List of file paths.
div (str): (optional) Div to pull out of html file/url with BeautifulSoup
Returns:
dict: A dictionary with file paths as keys and their parsed content (or error message) as values.
"""
def determine_file_type(file_path):
"""
Determine the file type based on its extension.
Parameters:
file_path (str): Path to the file.
Returns:
str: File extension (e.g., '.pdf', '.docx', '.txt', '.html').
"""
return os.path.splitext(file_path)[1].lower()
if not isinstance(file_paths, list):
raise ValueError("Expected a list of file paths.")
extension_to_parser = {
'.pdf': parse_pdf,
'.docx': parse_docx,
'.txt': parse_txt,
'.html': parse_html,
'.htm': parse_html # Considering both .html and .htm for HTML files
}
parsed_contents = {}
for file_path in file_paths:
print(file_path.name)
#file = open(file_path.name, 'r')
#print(file)
file_extension = determine_file_type(file_path.name)
if file_extension in extension_to_parser:
parsed_contents[file_path.name] = extension_to_parser[file_extension](file_path.name)
else:
parsed_contents[file_path.name] = f"Unsupported file type: {file_extension}"
return parsed_contents
def text_regex_clean(text):
# Merge hyphenated words
text = re.sub(r"(\w+)-\n(\w+)", r"\1\2", text)
# If a double newline ends in a letter, add a full stop.
text = re.sub(r'(?<=[a-zA-Z])\n\n', '.\n\n', text)
# Fix newlines in the middle of sentences
text = re.sub(r"(?<!\n\s)\n(?!\s\n)", " ", text.strip())
# Remove multiple newlines
text = re.sub(r"\n\s*\n", "\n\n", text)
text = re.sub(r" ", " ", text)
# Add full stops and new lines between words with no space between where the second one has a capital letter
text = re.sub(r'(?<=[a-z])(?=[A-Z])', '. \n\n', text)
return text
def parse_pdf(file) -> List[str]:
"""
Extract text from a PDF file.
Parameters:
file_path (str): Path to the PDF file.
Returns:
List[str]: Extracted text from the PDF.
"""
output = []
#for file in files:
print(file) # .name
pdf = PdfReader(file) #[i] .name[i]
for page in pdf.pages:
text = page.extract_text()
text = text_regex_clean(text)
output.append(text)
return output
def parse_docx(file_path):
"""
Reads the content of a .docx file and returns it as a string.
Parameters:
- file_path (str): Path to the .docx file.
Returns:
- str: Content of the .docx file.
"""
doc = Doc(file_path)
full_text = []
for para in doc.paragraphs:
para = text_regex_clean(para)
full_text.append(para.text.replace(" ", " ").strip())
return '\n'.join(full_text)
def parse_txt(file_path):
"""
Read text from a TXT or HTML file.
Parameters:
file_path (str): Path to the TXT or HTML file.
Returns:
str: Text content of the file.
"""
with open(file_path, 'r', encoding="utf-8") as file:
file_contents = file.read().replace(" ", " ").strip()
file_contents = text_regex_clean(file_contents)
return file_contents
def parse_html(page_url, div_filter="p"):
"""
Determine if the source is a web URL or a local HTML file, extract the content based on the div of choice. Also tries to extract dates (WIP)
Parameters:
page_url (str): The web URL or local file path.
Returns:
str: Extracted content.
"""
def is_web_url(s):
"""
Check if the input string is a web URL.
"""
return s.startswith("http://") or s.startswith("https://")
def is_local_html_file(s):
"""
Check if the input string is a path to a local HTML file.
"""
return (s.endswith(".html") or s.endswith(".htm")) and os.path.isfile(s)
def extract_text_from_source(source):
"""
Determine if the source is a web URL or a local HTML file,
and then extract its content accordingly.
Parameters:
source (str): The web URL or local file path.
Returns:
str: Extracted content.
"""
if is_web_url(source):
response = requests.get(source)
response.raise_for_status() # Raise an HTTPError for bad responses
return response.text.replace(" ", " ").strip()
elif is_local_html_file(source):
with open(source, 'r', encoding='utf-8') as file:
file_out = file.read().replace
return file_out
else:
raise ValueError("Input is neither a valid web URL nor a local HTML file path.")
def clean_html_data(data, date_filter="", div_filt="p"):
"""
Extracts and cleans data from HTML content.
Parameters:
data (str): HTML content to be parsed.
date_filter (str, optional): Date string to filter results. If set, only content with a date greater than this will be returned.
div_filt (str, optional): HTML tag to search for text content. Defaults to "p".
Returns:
tuple: Contains extracted text and date as strings. Returns empty strings if not found.
"""
soup = BeautifulSoup(data, 'html.parser')
# Function to exclude div with id "bar"
def exclude_div_with_id_bar(tag):
return tag.has_attr('id') and tag['id'] == 'related-links'
text_elements = soup.find_all(div_filt)
date_elements = soup.find_all(div_filt, {"class": "page-neutral-intro__meta"})
# Extract date
date_out = ""
if date_elements:
date_out = re.search(">(.*?)<", str(date_elements[0])).group(1)
date_dt = dateutil.parser.parse(date_out)
if date_filter:
date_filter_dt = dateutil.parser.parse(date_filter)
if date_dt < date_filter_dt:
return '', date_out
# Extract text
text_out_final = ""
if text_elements:
text_out_final = '\n'.join(paragraph.text for paragraph in text_elements)
text_out_final = text_regex_clean(text_out_final)
else:
print(f"No elements found with tag '{div_filt}'. No text returned.")
return text_out_final, date_out
#page_url = "https://pypi.org/project/InstructorEmbedding/" #'https://www.ons.gov.uk/visualisations/censusareachanges/E09000022/index.html'
html_text = extract_text_from_source(page_url)
#print(page.text)
texts = []
metadatas = []
clean_text, date = clean_html_data(html_text, date_filter="", div_filt=div_filter)
texts.append(clean_text)
metadatas.append({"source": page_url, "date":str(date)})
return texts, metadatas
# +
# Convert parsed text to docs
# -
def text_to_docs(text_dict: dict, chunk_size: int = chunk_size) -> List[Document]:
"""
Converts the output of parse_file (a dictionary of file paths to content)
to a list of Documents with metadata.
"""
doc_sections = []
parent_doc_sections = []
for file_path, content in text_dict.items():
ext = os.path.splitext(file_path)[1].lower()
# Depending on the file extension, handle the content
if ext == '.pdf':
docs, page_docs = pdf_text_to_docs(content, chunk_size)
elif ext in ['.html', '.htm', '.txt', '.docx']:
# Assuming you want to process HTML similarly to PDF in this context
docs = html_text_to_docs(content, chunk_size)
else:
print(f"Unsupported file type {ext} for {file_path}. Skipping.")
continue
match = re.search(r'.*[\/\\](.+)$', file_path)
filename_end = match.group(1)
# Add filename as metadata
for doc in docs: doc.metadata["source"] = filename_end
#for parent_doc in parent_docs: parent_doc.metadata["source"] = filename_end
doc_sections.extend(docs)
#parent_doc_sections.extend(parent_docs)
return doc_sections, page_docs
def pdf_text_to_docs(text, chunk_size: int = chunk_size) -> List[Document]:
"""Converts a string or list of strings to a list of Documents
with metadata."""
#print(text)
if isinstance(text, str):
# Take a single string as one page
text = [text]
page_docs = [Document(page_content=page, metadata={"page": page}) for page in text]
# Add page numbers as metadata
for i, doc in enumerate(page_docs):
doc.metadata["page"] = i + 1
print("page docs are: ")
print(page_docs)
# Split pages into sections
doc_sections = []
for doc in page_docs:
#print("page content: ")
#print(doc.page_content)
if doc.page_content == '':
sections = ['']
else:
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=chunk_size,
separators=split_strat,#["\n\n", "\n", ".", "!", "?", ",", " ", ""],
chunk_overlap=chunk_overlap,
add_start_index=True
)
sections = text_splitter.split_text(doc.page_content)
for i, section in enumerate(sections):
doc = Document(
page_content=section, metadata={"page": doc.metadata["page"], "section": i, "page_section": f"{doc.metadata['page']}-{i}"})
doc_sections.append(doc)
return doc_sections, page_docs#, parent_doc
def html_text_to_docs(texts, metadatas, chunk_size:int = chunk_size):
text_splitter = RecursiveCharacterTextSplitter(
separators=split_strat,#["\n\n", "\n", ".", "!", "?", ",", " ", ""],
chunk_size=chunk_size,
chunk_overlap=chunk_overlap,
length_function=len,
add_start_index=True
)
#print(texts)
#print(metadatas)
documents = text_splitter.create_documents(texts, metadatas=metadatas)
for i, section in enumerate(documents):
section.metadata["section"] = i + 1
return documents
# # Functions for working with documents after loading them back in
def pull_out_data(series):
# define a lambda function to convert each string into a tuple
to_tuple = lambda x: eval(x)
# apply the lambda function to each element of the series
series_tup = series.apply(to_tuple)
series_tup_content = list(zip(*series_tup))[1]
series = pd.Series(list(series_tup_content))#.str.replace("^Main post content", "", regex=True).str.strip()
return series
def docs_from_csv(df):
import ast
documents = []
page_content = pull_out_data(df["0"])
metadatas = pull_out_data(df["1"])
for x in range(0,len(df)):
new_doc = Document(page_content=page_content[x], metadata=metadatas[x])
documents.append(new_doc)
return documents
def docs_from_lists(docs, metadatas):
documents = []
for x, doc in enumerate(docs):
new_doc = Document(page_content=doc, metadata=metadatas[x])
documents.append(new_doc)
return documents
def docs_elements_from_csv_save(docs_path="documents.csv"):
documents = pd.read_csv(docs_path)
docs_out = docs_from_csv(documents)
out_df = pd.DataFrame(docs_out)
docs_content = pull_out_data(out_df[0].astype(str))
docs_meta = pull_out_data(out_df[1].astype(str))
doc_sources = [d['source'] for d in docs_meta]
return out_df, docs_content, docs_meta, doc_sources
# ## Create embeddings and save faiss vector store to the path specified in `save_to`
def load_embeddings(model_name = "thenlper/gte-base"):
if model_name == "hkunlp/instructor-large":
embeddings_func = HuggingFaceInstructEmbeddings(model_name=model_name,
embed_instruction="Represent the paragraph for retrieval: ",
query_instruction="Represent the question for retrieving supporting documents: "
)
else:
embeddings_func = HuggingFaceEmbeddings(model_name=model_name)
global embeddings
embeddings = embeddings_func
#return embeddings_func
def embed_faiss_save_to_zip(docs_out, save_to="faiss_lambeth_census_embedding", model_name = "thenlper/gte-base"):
load_embeddings(model_name=model_name)
#embeddings_fast = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
print(f"> Total split documents: {len(docs_out)}")
vectorstore = FAISS.from_documents(documents=docs_out, embedding=embeddings)
if Path(save_to).exists():
vectorstore.save_local(folder_path=save_to)
print("> DONE")
print(f"> Saved to: {save_to}")
### Save as zip, then remove faiss/pkl files to allow for upload to huggingface
import shutil
shutil.make_archive(save_to, 'zip', save_to)
os.remove(save_to + "/index.faiss")
os.remove(save_to + "/index.pkl")
shutil.move(save_to + '.zip', save_to + "/" + save_to + '.zip')
return vectorstore
def docs_to_chroma_save(embeddings, docs_out:PandasDataFrame, save_to:str):
print(f"> Total split documents: {len(docs_out)}")
vectordb = Chroma.from_documents(documents=docs_out,
embedding=embeddings,
persist_directory=save_to)
# persiste the db to disk
vectordb.persist()
print("> DONE")
print(f"> Saved to: {save_to}")
return vectordb
def sim_search_local_saved_vec(query, k_val, save_to="faiss_lambeth_census_embedding"):
load_embeddings()
docsearch = FAISS.load_local(folder_path=save_to, embeddings=embeddings)
display(Markdown(question))
search = docsearch.similarity_search_with_score(query, k=k_val)
for item in search:
print(item[0].page_content)
print(f"Page: {item[0].metadata['source']}")
print(f"Date: {item[0].metadata['date']}")
print(f"Score: {item[1]}")
print("---")