Spaces:
Running
Running
add deepspeed
Browse files- inference.py +319 -0
- requirements.txt +2 -1
- src/AI_Models/wave2vec_inference.py +560 -264
- src/apis/controllers/speaking_controller.py +7 -7
- src/apis/routes/speaking_route.py +3 -0
inference.py
ADDED
@@ -0,0 +1,319 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import (
|
3 |
+
Wav2Vec2ForCTC,
|
4 |
+
Wav2Vec2Processor,
|
5 |
+
AutoProcessor,
|
6 |
+
AutoModelForCTC,
|
7 |
+
)
|
8 |
+
|
9 |
+
# import deepspeed
|
10 |
+
import librosa
|
11 |
+
import numpy as np
|
12 |
+
from typing import Optional, List, Union
|
13 |
+
|
14 |
+
|
15 |
+
def get_model_name(model_name: Optional[str] = None) -> str:
|
16 |
+
"""Helper function to get model name with default fallback"""
|
17 |
+
if model_name is None:
|
18 |
+
return "facebook/wav2vec2-large-robust-ft-libri-960h"
|
19 |
+
return model_name
|
20 |
+
|
21 |
+
|
22 |
+
class Wave2Vec2Inference:
|
23 |
+
def __init__(
|
24 |
+
self,
|
25 |
+
model_name: Optional[str] = None,
|
26 |
+
use_gpu: bool = True,
|
27 |
+
use_deepspeed: bool = True,
|
28 |
+
):
|
29 |
+
"""
|
30 |
+
Initialize Wav2Vec2 model for inference with optional DeepSpeed optimization.
|
31 |
+
|
32 |
+
Args:
|
33 |
+
model_name: HuggingFace model name or None for default
|
34 |
+
use_gpu: Whether to use GPU acceleration
|
35 |
+
use_deepspeed: Whether to use DeepSpeed optimization
|
36 |
+
"""
|
37 |
+
# Get the actual model name using helper function
|
38 |
+
self.model_name = get_model_name(model_name)
|
39 |
+
self.use_deepspeed = use_deepspeed
|
40 |
+
|
41 |
+
# Auto-detect device
|
42 |
+
if use_gpu:
|
43 |
+
if torch.backends.mps.is_available():
|
44 |
+
self.device = "mps"
|
45 |
+
elif torch.cuda.is_available():
|
46 |
+
self.device = "cuda"
|
47 |
+
else:
|
48 |
+
self.device = "cpu"
|
49 |
+
else:
|
50 |
+
self.device = "cpu"
|
51 |
+
|
52 |
+
print(f"Using device: {self.device}")
|
53 |
+
print(f"Loading model: {self.model_name}")
|
54 |
+
print(f"DeepSpeed enabled: {self.use_deepspeed}")
|
55 |
+
|
56 |
+
# Check if model is XLSR and use appropriate processor/model
|
57 |
+
is_xlsr = "xlsr" in self.model_name.lower()
|
58 |
+
|
59 |
+
if is_xlsr:
|
60 |
+
print("Using Wav2Vec2Processor and Wav2Vec2ForCTC for XLSR model")
|
61 |
+
self.processor = Wav2Vec2Processor.from_pretrained(self.model_name)
|
62 |
+
self.model = Wav2Vec2ForCTC.from_pretrained(self.model_name)
|
63 |
+
else:
|
64 |
+
print("Using AutoProcessor and AutoModelForCTC")
|
65 |
+
self.processor = AutoProcessor.from_pretrained(self.model_name)
|
66 |
+
self.model = AutoModelForCTC.from_pretrained(self.model_name)
|
67 |
+
|
68 |
+
# Initialize DeepSpeed if enabled
|
69 |
+
if self.use_deepspeed:
|
70 |
+
self._init_deepspeed()
|
71 |
+
else:
|
72 |
+
self.model.to(self.device)
|
73 |
+
self.model.eval()
|
74 |
+
self.ds_engine = None
|
75 |
+
|
76 |
+
# Disable gradients for inference
|
77 |
+
torch.set_grad_enabled(False)
|
78 |
+
|
79 |
+
def _init_deepspeed(self):
|
80 |
+
"""Initialize DeepSpeed inference engine"""
|
81 |
+
try:
|
82 |
+
# DeepSpeed configuration based on device
|
83 |
+
if self.device == "cuda":
|
84 |
+
ds_config = {
|
85 |
+
"tensor_parallel": {"tp_size": 1},
|
86 |
+
"dtype": torch.float32,
|
87 |
+
"replace_with_kernel_inject": True,
|
88 |
+
"enable_cuda_graph": False,
|
89 |
+
}
|
90 |
+
else:
|
91 |
+
ds_config = {
|
92 |
+
"tensor_parallel": {"tp_size": 1},
|
93 |
+
"dtype": torch.float32,
|
94 |
+
"replace_with_kernel_inject": False,
|
95 |
+
"enable_cuda_graph": False,
|
96 |
+
}
|
97 |
+
|
98 |
+
print("Initializing DeepSpeed inference engine...")
|
99 |
+
self.ds_engine = deepspeed.init_inference(self.model, **ds_config)
|
100 |
+
self.ds_engine.module.to(self.device)
|
101 |
+
|
102 |
+
except Exception as e:
|
103 |
+
print(f"DeepSpeed initialization failed: {e}")
|
104 |
+
print("Falling back to standard PyTorch inference...")
|
105 |
+
self.use_deepspeed = False
|
106 |
+
self.ds_engine = None
|
107 |
+
self.model.to(self.device)
|
108 |
+
self.model.eval()
|
109 |
+
|
110 |
+
def _get_model(self):
|
111 |
+
"""Get the appropriate model for inference"""
|
112 |
+
if self.use_deepspeed and self.ds_engine is not None:
|
113 |
+
return self.ds_engine.module
|
114 |
+
return self.model
|
115 |
+
|
116 |
+
def buffer_to_text(
|
117 |
+
self, audio_buffer: Union[np.ndarray, torch.Tensor, List]
|
118 |
+
) -> str:
|
119 |
+
"""
|
120 |
+
Convert audio buffer to text transcription.
|
121 |
+
|
122 |
+
Args:
|
123 |
+
audio_buffer: Audio data as numpy array, tensor, or list
|
124 |
+
|
125 |
+
Returns:
|
126 |
+
str: Transcribed text
|
127 |
+
"""
|
128 |
+
if len(audio_buffer) == 0:
|
129 |
+
return ""
|
130 |
+
|
131 |
+
# Convert to tensor
|
132 |
+
if isinstance(audio_buffer, np.ndarray):
|
133 |
+
audio_tensor = torch.from_numpy(audio_buffer).float()
|
134 |
+
elif isinstance(audio_buffer, list):
|
135 |
+
audio_tensor = torch.tensor(audio_buffer, dtype=torch.float32)
|
136 |
+
else:
|
137 |
+
audio_tensor = audio_buffer.float()
|
138 |
+
|
139 |
+
# Process audio
|
140 |
+
inputs = self.processor(
|
141 |
+
audio_tensor,
|
142 |
+
sampling_rate=16_000,
|
143 |
+
return_tensors="pt",
|
144 |
+
padding=True,
|
145 |
+
)
|
146 |
+
|
147 |
+
# Move to device
|
148 |
+
input_values = inputs.input_values.to(self.device)
|
149 |
+
attention_mask = (
|
150 |
+
inputs.attention_mask.to(self.device)
|
151 |
+
if "attention_mask" in inputs
|
152 |
+
else None
|
153 |
+
)
|
154 |
+
|
155 |
+
# Get the appropriate model
|
156 |
+
model = self._get_model()
|
157 |
+
|
158 |
+
# Inference
|
159 |
+
with torch.no_grad():
|
160 |
+
if attention_mask is not None:
|
161 |
+
outputs = model(input_values, attention_mask=attention_mask)
|
162 |
+
else:
|
163 |
+
outputs = model(input_values)
|
164 |
+
|
165 |
+
# Handle different output formats
|
166 |
+
if hasattr(outputs, "logits"):
|
167 |
+
logits = outputs.logits
|
168 |
+
else:
|
169 |
+
logits = outputs
|
170 |
+
|
171 |
+
# Decode
|
172 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
173 |
+
if self.device != "cpu":
|
174 |
+
predicted_ids = predicted_ids.cpu()
|
175 |
+
|
176 |
+
transcription = self.processor.batch_decode(predicted_ids)[0]
|
177 |
+
return transcription.lower().strip()
|
178 |
+
|
179 |
+
def file_to_text(self, filename: str) -> str:
|
180 |
+
"""
|
181 |
+
Transcribe audio file to text.
|
182 |
+
|
183 |
+
Args:
|
184 |
+
filename: Path to audio file
|
185 |
+
|
186 |
+
Returns:
|
187 |
+
str: Transcribed text
|
188 |
+
"""
|
189 |
+
try:
|
190 |
+
audio_input, _ = librosa.load(filename, sr=16000, dtype=np.float32)
|
191 |
+
return self.buffer_to_text(audio_input)
|
192 |
+
except Exception as e:
|
193 |
+
print(f"Error loading audio file {filename}: {e}")
|
194 |
+
return ""
|
195 |
+
|
196 |
+
def batch_file_to_text(self, filenames: List[str]) -> List[str]:
|
197 |
+
"""
|
198 |
+
Transcribe multiple audio files to text.
|
199 |
+
|
200 |
+
Args:
|
201 |
+
filenames: List of audio file paths
|
202 |
+
|
203 |
+
Returns:
|
204 |
+
List[str]: List of transcribed texts
|
205 |
+
"""
|
206 |
+
results = []
|
207 |
+
for i, filename in enumerate(filenames):
|
208 |
+
print(f"Processing file {i+1}/{len(filenames)}: {filename}")
|
209 |
+
transcription = self.file_to_text(filename)
|
210 |
+
results.append(transcription)
|
211 |
+
if transcription:
|
212 |
+
print(f"Transcription: {transcription}")
|
213 |
+
else:
|
214 |
+
print("Failed to transcribe")
|
215 |
+
return results
|
216 |
+
|
217 |
+
def transcribe_with_confidence(
|
218 |
+
self, audio_buffer: Union[np.ndarray, torch.Tensor]
|
219 |
+
) -> tuple:
|
220 |
+
"""
|
221 |
+
Transcribe audio and return confidence scores.
|
222 |
+
|
223 |
+
Args:
|
224 |
+
audio_buffer: Audio data
|
225 |
+
|
226 |
+
Returns:
|
227 |
+
tuple: (transcription, confidence_scores)
|
228 |
+
"""
|
229 |
+
if len(audio_buffer) == 0:
|
230 |
+
return "", []
|
231 |
+
|
232 |
+
# Convert to tensor
|
233 |
+
if isinstance(audio_buffer, np.ndarray):
|
234 |
+
audio_tensor = torch.from_numpy(audio_buffer).float()
|
235 |
+
else:
|
236 |
+
audio_tensor = audio_buffer.float()
|
237 |
+
|
238 |
+
# Process audio
|
239 |
+
inputs = self.processor(
|
240 |
+
audio_tensor,
|
241 |
+
sampling_rate=16_000,
|
242 |
+
return_tensors="pt",
|
243 |
+
padding=True,
|
244 |
+
)
|
245 |
+
|
246 |
+
input_values = inputs.input_values.to(self.device)
|
247 |
+
attention_mask = (
|
248 |
+
inputs.attention_mask.to(self.device)
|
249 |
+
if "attention_mask" in inputs
|
250 |
+
else None
|
251 |
+
)
|
252 |
+
|
253 |
+
model = self._get_model()
|
254 |
+
|
255 |
+
# Inference
|
256 |
+
with torch.no_grad():
|
257 |
+
if attention_mask is not None:
|
258 |
+
outputs = model(input_values, attention_mask=attention_mask)
|
259 |
+
else:
|
260 |
+
outputs = model(input_values)
|
261 |
+
|
262 |
+
if hasattr(outputs, "logits"):
|
263 |
+
logits = outputs.logits
|
264 |
+
else:
|
265 |
+
logits = outputs
|
266 |
+
|
267 |
+
# Get probabilities and confidence scores
|
268 |
+
probs = torch.nn.functional.softmax(logits, dim=-1)
|
269 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
270 |
+
|
271 |
+
# Calculate confidence as max probability for each prediction
|
272 |
+
max_probs = torch.max(probs, dim=-1)[0]
|
273 |
+
confidence_scores = max_probs.cpu().numpy().tolist()
|
274 |
+
|
275 |
+
if self.device != "cpu":
|
276 |
+
predicted_ids = predicted_ids.cpu()
|
277 |
+
|
278 |
+
transcription = self.processor.batch_decode(predicted_ids)[0]
|
279 |
+
return transcription.lower().strip(), confidence_scores
|
280 |
+
|
281 |
+
def cleanup(self):
|
282 |
+
"""Clean up resources"""
|
283 |
+
if hasattr(self, "ds_engine") and self.ds_engine is not None:
|
284 |
+
del self.ds_engine
|
285 |
+
if hasattr(self, "model"):
|
286 |
+
del self.model
|
287 |
+
if hasattr(self, "processor"):
|
288 |
+
del self.processor
|
289 |
+
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
290 |
+
|
291 |
+
def __del__(self):
|
292 |
+
"""Destructor to clean up resources"""
|
293 |
+
self.cleanup()
|
294 |
+
|
295 |
+
|
296 |
+
# Example usage
|
297 |
+
if __name__ == "__main__":
|
298 |
+
# Initialize with DeepSpeed
|
299 |
+
asr = Wave2Vec2Inference(
|
300 |
+
model_name="facebook/wav2vec2-large-robust-ft-libri-960h",
|
301 |
+
use_gpu=False,
|
302 |
+
use_deepspeed=False,
|
303 |
+
)
|
304 |
+
|
305 |
+
# Single file transcription
|
306 |
+
result = asr.file_to_text("./test_audio/hello_how_are_you_today.wav")
|
307 |
+
print(f"Transcription: {result}")
|
308 |
+
|
309 |
+
# # Batch processing
|
310 |
+
# files = ["audio1.wav", "audio2.wav", "audio3.wav"]
|
311 |
+
# batch_results = asr.batch_file_to_text(files)
|
312 |
+
|
313 |
+
# # Transcription with confidence scores
|
314 |
+
# audio_data, _ = librosa.load("path/to/audio.wav", sr=16000)
|
315 |
+
# transcription, confidence = asr.transcribe_with_confidence(audio_data)
|
316 |
+
# print(f"Transcription: {transcription}")
|
317 |
+
# print(f"Average confidence: {np.mean(confidence):.3f}")
|
318 |
+
|
319 |
+
# Cleanup
|
requirements.txt
CHANGED
@@ -23,4 +23,5 @@ onnx
|
|
23 |
transformers
|
24 |
torch
|
25 |
optimum[onnxruntime]
|
26 |
-
Levenshtein
|
|
|
|
23 |
transformers
|
24 |
torch
|
25 |
optimum[onnxruntime]
|
26 |
+
Levenshtein
|
27 |
+
deepspeed
|
src/AI_Models/wave2vec_inference.py
CHANGED
@@ -1,63 +1,416 @@
|
|
1 |
-
import torch
|
2 |
-
from transformers import (
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
)
|
8 |
-
import onnxruntime as rt
|
9 |
-
import numpy as np
|
10 |
-
import librosa
|
11 |
-
import warnings
|
12 |
-
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
warnings.filterwarnings("ignore")
|
15 |
|
16 |
-
#
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
#
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
|
|
|
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
return WAVE2VEC2_MODELS.copy()
|
34 |
|
|
|
|
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
|
56 |
class Wave2Vec2Inference:
|
57 |
-
def __init__(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
# Get the actual model name using helper function
|
59 |
self.model_name = get_model_name(model_name)
|
60 |
-
|
|
|
61 |
# Auto-detect device
|
62 |
if use_gpu:
|
63 |
if torch.backends.mps.is_available():
|
@@ -71,10 +424,11 @@ class Wave2Vec2Inference:
|
|
71 |
|
72 |
print(f"Using device: {self.device}")
|
73 |
print(f"Loading model: {self.model_name}")
|
|
|
74 |
|
75 |
# Check if model is XLSR and use appropriate processor/model
|
76 |
is_xlsr = "xlsr" in self.model_name.lower()
|
77 |
-
|
78 |
if is_xlsr:
|
79 |
print("Using Wav2Vec2Processor and Wav2Vec2ForCTC for XLSR model")
|
80 |
self.processor = Wav2Vec2Processor.from_pretrained(self.model_name)
|
@@ -83,22 +437,77 @@ class Wave2Vec2Inference:
|
|
83 |
print("Using AutoProcessor and AutoModelForCTC")
|
84 |
self.processor = AutoProcessor.from_pretrained(self.model_name)
|
85 |
self.model = AutoModelForCTC.from_pretrained(self.model_name)
|
86 |
-
|
87 |
-
|
88 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
# Disable gradients for inference
|
91 |
torch.set_grad_enabled(False)
|
92 |
|
93 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
if len(audio_buffer) == 0:
|
95 |
return ""
|
96 |
|
97 |
# Convert to tensor
|
98 |
if isinstance(audio_buffer, np.ndarray):
|
99 |
audio_tensor = torch.from_numpy(audio_buffer).float()
|
100 |
-
|
101 |
audio_tensor = torch.tensor(audio_buffer, dtype=torch.float32)
|
|
|
|
|
102 |
|
103 |
# Process audio
|
104 |
inputs = self.processor(
|
@@ -116,12 +525,21 @@ class Wave2Vec2Inference:
|
|
116 |
else None
|
117 |
)
|
118 |
|
|
|
|
|
|
|
119 |
# Inference
|
120 |
with torch.no_grad():
|
121 |
if attention_mask is not None:
|
122 |
-
|
123 |
else:
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
# Decode
|
127 |
predicted_ids = torch.argmax(logits, dim=-1)
|
@@ -131,7 +549,16 @@ class Wave2Vec2Inference:
|
|
131 |
transcription = self.processor.batch_decode(predicted_ids)[0]
|
132 |
return transcription.lower().strip()
|
133 |
|
134 |
-
def file_to_text(self, filename):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
try:
|
136 |
audio_input, _ = librosa.load(filename, sr=16000, dtype=np.float32)
|
137 |
return self.buffer_to_text(audio_input)
|
@@ -139,232 +566,101 @@ class Wave2Vec2Inference:
|
|
139 |
print(f"Error loading audio file {filename}: {e}")
|
140 |
return ""
|
141 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
# Always use Wav2Vec2Processor for ONNX (works for all models)
|
150 |
-
self.processor = Wav2Vec2Processor.from_pretrained(self.model_name)
|
151 |
-
|
152 |
-
# Setup ONNX Runtime
|
153 |
-
options = rt.SessionOptions()
|
154 |
-
options.graph_optimization_level = rt.GraphOptimizationLevel.ORT_ENABLE_ALL
|
155 |
-
|
156 |
-
# Choose providers based on GPU availability
|
157 |
-
providers = []
|
158 |
-
if use_gpu and rt.get_available_providers():
|
159 |
-
if "CUDAExecutionProvider" in rt.get_available_providers():
|
160 |
-
providers.append("CUDAExecutionProvider")
|
161 |
-
providers.append("CPUExecutionProvider")
|
162 |
|
163 |
-
|
164 |
-
|
165 |
-
print(f"ONNX model loaded with providers: {self.model.get_providers()}")
|
166 |
|
167 |
-
|
|
|
|
|
168 |
if len(audio_buffer) == 0:
|
169 |
-
return ""
|
170 |
|
171 |
# Convert to tensor
|
172 |
if isinstance(audio_buffer, np.ndarray):
|
173 |
audio_tensor = torch.from_numpy(audio_buffer).float()
|
174 |
else:
|
175 |
-
audio_tensor =
|
176 |
|
177 |
# Process audio
|
178 |
inputs = self.processor(
|
179 |
audio_tensor,
|
180 |
sampling_rate=16_000,
|
181 |
-
return_tensors="
|
182 |
padding=True,
|
183 |
)
|
184 |
|
185 |
-
|
186 |
-
|
187 |
-
|
|
|
|
|
|
|
|
|
|
|
188 |
|
189 |
-
#
|
190 |
-
|
191 |
-
|
192 |
-
|
|
|
|
|
193 |
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
except Exception as e:
|
199 |
-
print(f"Error loading audio file {filename}: {e}")
|
200 |
-
return ""
|
201 |
|
|
|
|
|
|
|
202 |
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
model = Wav2Vec2ForCTC.from_pretrained(model_id_or_path)
|
207 |
-
model.eval()
|
208 |
-
|
209 |
-
# Create dummy input
|
210 |
-
audio_len = 250000
|
211 |
-
dummy_input = torch.randn(1, audio_len, requires_grad=True)
|
212 |
-
|
213 |
-
torch.onnx.export(
|
214 |
-
model,
|
215 |
-
dummy_input,
|
216 |
-
onnx_model_name,
|
217 |
-
export_params=True,
|
218 |
-
opset_version=14,
|
219 |
-
do_constant_folding=True,
|
220 |
-
input_names=["input"],
|
221 |
-
output_names=["output"],
|
222 |
-
dynamic_axes={
|
223 |
-
"input": {1: "audio_len"},
|
224 |
-
"output": {1: "audio_len"},
|
225 |
-
},
|
226 |
-
)
|
227 |
-
print(f"ONNX model saved to: {onnx_model_name}")
|
228 |
-
|
229 |
-
|
230 |
-
def quantize_onnx_model(onnx_model_path, quantized_model_path):
|
231 |
-
"""Quantize ONNX model for faster inference"""
|
232 |
-
print("Starting quantization...")
|
233 |
-
from onnxruntime.quantization import quantize_dynamic, QuantType
|
234 |
-
|
235 |
-
quantize_dynamic(
|
236 |
-
onnx_model_path, quantized_model_path, weight_type=QuantType.QUInt8
|
237 |
-
)
|
238 |
-
print(f"Quantized model saved to: {quantized_model_path}")
|
239 |
-
|
240 |
-
|
241 |
-
def export_to_onnx(model_name, quantize=False):
|
242 |
-
"""
|
243 |
-
Export model to ONNX format with optional quantization
|
244 |
-
|
245 |
-
Args:
|
246 |
-
model_name: HuggingFace model name
|
247 |
-
quantize: Whether to also create quantized version
|
248 |
-
|
249 |
-
Returns:
|
250 |
-
tuple: (onnx_path, quantized_path or None)
|
251 |
-
"""
|
252 |
-
onnx_filename = f"{model_name.split('/')[-1]}.onnx"
|
253 |
-
convert_to_onnx(model_name, onnx_filename)
|
254 |
-
|
255 |
-
quantized_path = None
|
256 |
-
if quantize:
|
257 |
-
quantized_path = onnx_filename.replace(".onnx", ".quantized.onnx")
|
258 |
-
quantize_onnx_model(onnx_filename, quantized_path)
|
259 |
-
|
260 |
-
return onnx_filename, quantized_path
|
261 |
-
|
262 |
-
|
263 |
-
def create_inference(
|
264 |
-
model_name=None, use_onnx=False, onnx_path=None, use_gpu=True, use_onnx_quantize=False
|
265 |
-
):
|
266 |
-
"""
|
267 |
-
Create optimized inference instance
|
268 |
-
|
269 |
-
Args:
|
270 |
-
model_name: Model key from WAVE2VEC2_MODELS or full HuggingFace model name (default: uses DEFAULT_MODEL)
|
271 |
-
use_onnx: Whether to use ONNX runtime
|
272 |
-
onnx_path: Path to ONNX model file
|
273 |
-
use_gpu: Whether to use GPU if available
|
274 |
-
use_onnx_quantize: Whether to use quantized ONNX model
|
275 |
-
|
276 |
-
Returns:
|
277 |
-
Inference instance
|
278 |
-
"""
|
279 |
-
# Get the actual model name
|
280 |
-
actual_model_name = get_model_name(model_name)
|
281 |
-
|
282 |
-
if use_onnx:
|
283 |
-
if not onnx_path or not os.path.exists(onnx_path):
|
284 |
-
# Convert to ONNX if path not provided or doesn't exist
|
285 |
-
onnx_filename = f"{actual_model_name.split('/')[-1]}.onnx"
|
286 |
-
convert_to_onnx(actual_model_name, onnx_filename)
|
287 |
-
onnx_path = onnx_filename
|
288 |
-
|
289 |
-
if use_onnx_quantize:
|
290 |
-
quantized_path = onnx_path.replace(".onnx", ".quantized.onnx")
|
291 |
-
if not os.path.exists(quantized_path):
|
292 |
-
quantize_onnx_model(onnx_path, quantized_path)
|
293 |
-
onnx_path = quantized_path
|
294 |
-
|
295 |
-
print(f"Using ONNX model: {onnx_path}")
|
296 |
-
return Wave2Vec2ONNXInference(model_name, onnx_path, use_gpu)
|
297 |
-
else:
|
298 |
-
print("Using PyTorch model")
|
299 |
-
return Wave2Vec2Inference(model_name, use_gpu)
|
300 |
-
|
301 |
-
|
302 |
-
if __name__ == "__main__":
|
303 |
-
import time
|
304 |
-
|
305 |
-
# Display available models
|
306 |
-
print("Available Wave2Vec2 models:")
|
307 |
-
for key, model_name in get_available_models().items():
|
308 |
-
print(f" {key}: {model_name}")
|
309 |
-
print(f"\nDefault model: {DEFAULT_MODEL}")
|
310 |
-
print()
|
311 |
-
|
312 |
-
# Test with different models
|
313 |
-
test_models = ["english_large", "multilingual", "english_960h"]
|
314 |
-
test_file = "test.wav"
|
315 |
-
|
316 |
-
if not os.path.exists(test_file):
|
317 |
-
print(f"Test file {test_file} not found. Please provide a valid audio file.")
|
318 |
-
print("Creating example usage without actual file...")
|
319 |
-
|
320 |
-
# Example usage without file
|
321 |
-
print("\n=== Example Usage ===")
|
322 |
-
|
323 |
-
# Using default model
|
324 |
-
print("1. Using default model:")
|
325 |
-
asr_default = create_inference()
|
326 |
-
print(f" Model loaded: {asr_default.model_name}")
|
327 |
-
|
328 |
-
# Using model key
|
329 |
-
print("\n2. Using model key 'english_large':")
|
330 |
-
asr_key = create_inference("english_large")
|
331 |
-
print(f" Model loaded: {asr_key.model_name}")
|
332 |
-
|
333 |
-
# Using full model name
|
334 |
-
print("\n3. Using full model name:")
|
335 |
-
asr_full = create_inference("facebook/wav2vec2-base-960h")
|
336 |
-
print(f" Model loaded: {asr_full.model_name}")
|
337 |
-
|
338 |
-
exit(0)
|
339 |
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
# Test performance
|
360 |
-
times = []
|
361 |
-
for i in range(3):
|
362 |
-
start_time = time.time()
|
363 |
-
text = asr.file_to_text(test_file)
|
364 |
-
end_time = time.time()
|
365 |
-
execution_time = end_time - start_time
|
366 |
-
times.append(execution_time)
|
367 |
-
print(f"Run {i+1}: {execution_time:.3f}s - {text[:50]}...")
|
368 |
-
|
369 |
-
avg_time = sum(times) / len(times)
|
370 |
-
print(f"Average time: {avg_time:.3f}s")
|
|
|
1 |
+
# import torch
|
2 |
+
# from transformers import (
|
3 |
+
# AutoModelForCTC,
|
4 |
+
# AutoProcessor,
|
5 |
+
# Wav2Vec2Processor,
|
6 |
+
# Wav2Vec2ForCTC,
|
7 |
+
# )
|
8 |
+
# import onnxruntime as rt
|
9 |
+
# import numpy as np
|
10 |
+
# import librosa
|
11 |
+
# import warnings
|
12 |
+
# import os
|
13 |
+
|
14 |
+
# warnings.filterwarnings("ignore")
|
15 |
+
|
16 |
+
# # Available Wave2Vec2 models
|
17 |
+
# WAVE2VEC2_MODELS = {
|
18 |
+
# "english_large": "jonatasgrosman/wav2vec2-large-xlsr-53-english",
|
19 |
+
# "multilingual": "facebook/wav2vec2-large-xlsr-53",
|
20 |
+
# "english_960h": "facebook/wav2vec2-large-960h-lv60-self",
|
21 |
+
# "base_english": "facebook/wav2vec2-base-960h",
|
22 |
+
# "large_english": "facebook/wav2vec2-large-960h",
|
23 |
+
# "xlsr_english": "jonatasgrosman/wav2vec2-large-xlsr-53-english",
|
24 |
+
# "xlsr_multilingual": "facebook/wav2vec2-large-xlsr-53"
|
25 |
+
# }
|
26 |
+
|
27 |
+
# # Default model
|
28 |
+
# DEFAULT_MODEL = "jonatasgrosman/wav2vec2-large-xlsr-53-english"
|
29 |
+
|
30 |
+
|
31 |
+
# def get_available_models():
|
32 |
+
# """Return dictionary of available Wave2Vec2 models"""
|
33 |
+
# return WAVE2VEC2_MODELS.copy()
|
34 |
+
|
35 |
+
|
36 |
+
# def get_model_name(model_key=None):
|
37 |
+
# """
|
38 |
+
# Get model name from key or return default
|
39 |
+
|
40 |
+
# Args:
|
41 |
+
# model_key: Key from WAVE2VEC2_MODELS or full model name
|
42 |
+
|
43 |
+
# Returns:
|
44 |
+
# str: Full model name
|
45 |
+
# """
|
46 |
+
# if model_key is None:
|
47 |
+
# return DEFAULT_MODEL
|
48 |
+
|
49 |
+
# if model_key in WAVE2VEC2_MODELS:
|
50 |
+
# return WAVE2VEC2_MODELS[model_key]
|
51 |
+
|
52 |
+
# # If it's already a full model name, return as is
|
53 |
+
# return model_key
|
54 |
|
|
|
55 |
|
56 |
+
# class Wave2Vec2Inference:
|
57 |
+
# def __init__(self, model_name=None, use_gpu=True):
|
58 |
+
# # Get the actual model name using helper function
|
59 |
+
# self.model_name = get_model_name(model_name)
|
60 |
+
|
61 |
+
# # Auto-detect device
|
62 |
+
# if use_gpu:
|
63 |
+
# if torch.backends.mps.is_available():
|
64 |
+
# self.device = "mps"
|
65 |
+
# elif torch.cuda.is_available():
|
66 |
+
# self.device = "cuda"
|
67 |
+
# else:
|
68 |
+
# self.device = "cpu"
|
69 |
+
# else:
|
70 |
+
# self.device = "cpu"
|
71 |
+
|
72 |
+
# print(f"Using device: {self.device}")
|
73 |
+
# print(f"Loading model: {self.model_name}")
|
74 |
+
|
75 |
+
# # Check if model is XLSR and use appropriate processor/model
|
76 |
+
# is_xlsr = "xlsr" in self.model_name.lower()
|
77 |
+
|
78 |
+
# if is_xlsr:
|
79 |
+
# print("Using Wav2Vec2Processor and Wav2Vec2ForCTC for XLSR model")
|
80 |
+
# self.processor = Wav2Vec2Processor.from_pretrained(self.model_name)
|
81 |
+
# self.model = Wav2Vec2ForCTC.from_pretrained(self.model_name)
|
82 |
+
# else:
|
83 |
+
# print("Using AutoProcessor and AutoModelForCTC")
|
84 |
+
# self.processor = AutoProcessor.from_pretrained(self.model_name)
|
85 |
+
# self.model = AutoModelForCTC.from_pretrained(self.model_name)
|
86 |
+
|
87 |
+
# self.model.to(self.device)
|
88 |
+
# self.model.eval()
|
89 |
+
|
90 |
+
# # Disable gradients for inference
|
91 |
+
# torch.set_grad_enabled(False)
|
92 |
+
|
93 |
+
# def buffer_to_text(self, audio_buffer):
|
94 |
+
# if len(audio_buffer) == 0:
|
95 |
+
# return ""
|
96 |
+
|
97 |
+
# # Convert to tensor
|
98 |
+
# if isinstance(audio_buffer, np.ndarray):
|
99 |
+
# audio_tensor = torch.from_numpy(audio_buffer).float()
|
100 |
+
# else:
|
101 |
+
# audio_tensor = torch.tensor(audio_buffer, dtype=torch.float32)
|
102 |
+
|
103 |
+
# # Process audio
|
104 |
+
# inputs = self.processor(
|
105 |
+
# audio_tensor,
|
106 |
+
# sampling_rate=16_000,
|
107 |
+
# return_tensors="pt",
|
108 |
+
# padding=True,
|
109 |
+
# )
|
110 |
+
|
111 |
+
# # Move to device
|
112 |
+
# input_values = inputs.input_values.to(self.device)
|
113 |
+
# attention_mask = (
|
114 |
+
# inputs.attention_mask.to(self.device)
|
115 |
+
# if "attention_mask" in inputs
|
116 |
+
# else None
|
117 |
+
# )
|
118 |
+
|
119 |
+
# # Inference
|
120 |
+
# with torch.no_grad():
|
121 |
+
# if attention_mask is not None:
|
122 |
+
# logits = self.model(input_values, attention_mask=attention_mask).logits
|
123 |
+
# else:
|
124 |
+
# logits = self.model(input_values).logits
|
125 |
+
|
126 |
+
# # Decode
|
127 |
+
# predicted_ids = torch.argmax(logits, dim=-1)
|
128 |
+
# if self.device != "cpu":
|
129 |
+
# predicted_ids = predicted_ids.cpu()
|
130 |
+
|
131 |
+
# transcription = self.processor.batch_decode(predicted_ids)[0]
|
132 |
+
# return transcription.lower().strip()
|
133 |
+
|
134 |
+
# def file_to_text(self, filename):
|
135 |
+
# try:
|
136 |
+
# audio_input, _ = librosa.load(filename, sr=16000, dtype=np.float32)
|
137 |
+
# return self.buffer_to_text(audio_input)
|
138 |
+
# except Exception as e:
|
139 |
+
# print(f"Error loading audio file {filename}: {e}")
|
140 |
+
# return ""
|
141 |
+
|
142 |
+
|
143 |
+
# class Wave2Vec2ONNXInference:
|
144 |
+
# def __init__(self, model_name=None, onnx_path=None, use_gpu=True):
|
145 |
+
# # Get the actual model name using helper function
|
146 |
+
# self.model_name = get_model_name(model_name)
|
147 |
+
# print(f"Loading ONNX model: {self.model_name}")
|
148 |
+
|
149 |
+
# # Always use Wav2Vec2Processor for ONNX (works for all models)
|
150 |
+
# self.processor = Wav2Vec2Processor.from_pretrained(self.model_name)
|
151 |
+
|
152 |
+
# # Setup ONNX Runtime
|
153 |
+
# options = rt.SessionOptions()
|
154 |
+
# options.graph_optimization_level = rt.GraphOptimizationLevel.ORT_ENABLE_ALL
|
155 |
+
|
156 |
+
# # Choose providers based on GPU availability
|
157 |
+
# providers = []
|
158 |
+
# if use_gpu and rt.get_available_providers():
|
159 |
+
# if "CUDAExecutionProvider" in rt.get_available_providers():
|
160 |
+
# providers.append("CUDAExecutionProvider")
|
161 |
+
# providers.append("CPUExecutionProvider")
|
162 |
+
|
163 |
+
# self.model = rt.InferenceSession(onnx_path, options, providers=providers)
|
164 |
+
# self.input_name = self.model.get_inputs()[0].name
|
165 |
+
# print(f"ONNX model loaded with providers: {self.model.get_providers()}")
|
166 |
+
|
167 |
+
# def buffer_to_text(self, audio_buffer):
|
168 |
+
# if len(audio_buffer) == 0:
|
169 |
+
# return ""
|
170 |
+
|
171 |
+
# # Convert to tensor
|
172 |
+
# if isinstance(audio_buffer, np.ndarray):
|
173 |
+
# audio_tensor = torch.from_numpy(audio_buffer).float()
|
174 |
+
# else:
|
175 |
+
# audio_tensor = torch.tensor(audio_buffer, dtype=torch.float32)
|
176 |
+
|
177 |
+
# # Process audio
|
178 |
+
# inputs = self.processor(
|
179 |
+
# audio_tensor,
|
180 |
+
# sampling_rate=16_000,
|
181 |
+
# return_tensors="np",
|
182 |
+
# padding=True,
|
183 |
+
# )
|
184 |
+
|
185 |
+
# # ONNX inference
|
186 |
+
# input_values = inputs.input_values.astype(np.float32)
|
187 |
+
# onnx_outputs = self.model.run(None, {self.input_name: input_values})[0]
|
188 |
+
|
189 |
+
# # Decode
|
190 |
+
# prediction = np.argmax(onnx_outputs, axis=-1)
|
191 |
+
# transcription = self.processor.decode(prediction.squeeze().tolist())
|
192 |
+
# return transcription.lower().strip()
|
193 |
+
|
194 |
+
# def file_to_text(self, filename):
|
195 |
+
# try:
|
196 |
+
# audio_input, _ = librosa.load(filename, sr=16000, dtype=np.float32)
|
197 |
+
# return self.buffer_to_text(audio_input)
|
198 |
+
# except Exception as e:
|
199 |
+
# print(f"Error loading audio file {filename}: {e}")
|
200 |
+
# return ""
|
201 |
+
|
202 |
+
|
203 |
+
# def convert_to_onnx(model_id_or_path, onnx_model_name):
|
204 |
+
# """Convert PyTorch model to ONNX format"""
|
205 |
+
# print(f"Converting {model_id_or_path} to ONNX...")
|
206 |
+
# model = Wav2Vec2ForCTC.from_pretrained(model_id_or_path)
|
207 |
+
# model.eval()
|
208 |
+
|
209 |
+
# # Create dummy input
|
210 |
+
# audio_len = 250000
|
211 |
+
# dummy_input = torch.randn(1, audio_len, requires_grad=True)
|
212 |
+
|
213 |
+
# torch.onnx.export(
|
214 |
+
# model,
|
215 |
+
# dummy_input,
|
216 |
+
# onnx_model_name,
|
217 |
+
# export_params=True,
|
218 |
+
# opset_version=14,
|
219 |
+
# do_constant_folding=True,
|
220 |
+
# input_names=["input"],
|
221 |
+
# output_names=["output"],
|
222 |
+
# dynamic_axes={
|
223 |
+
# "input": {1: "audio_len"},
|
224 |
+
# "output": {1: "audio_len"},
|
225 |
+
# },
|
226 |
+
# )
|
227 |
+
# print(f"ONNX model saved to: {onnx_model_name}")
|
228 |
+
|
229 |
+
|
230 |
+
# def quantize_onnx_model(onnx_model_path, quantized_model_path):
|
231 |
+
# """Quantize ONNX model for faster inference"""
|
232 |
+
# print("Starting quantization...")
|
233 |
+
# from onnxruntime.quantization import quantize_dynamic, QuantType
|
234 |
+
|
235 |
+
# quantize_dynamic(
|
236 |
+
# onnx_model_path, quantized_model_path, weight_type=QuantType.QUInt8
|
237 |
+
# )
|
238 |
+
# print(f"Quantized model saved to: {quantized_model_path}")
|
239 |
+
|
240 |
+
|
241 |
+
# def export_to_onnx(model_name, quantize=False):
|
242 |
+
# """
|
243 |
+
# Export model to ONNX format with optional quantization
|
244 |
+
|
245 |
+
# Args:
|
246 |
+
# model_name: HuggingFace model name
|
247 |
+
# quantize: Whether to also create quantized version
|
248 |
+
|
249 |
+
# Returns:
|
250 |
+
# tuple: (onnx_path, quantized_path or None)
|
251 |
+
# """
|
252 |
+
# onnx_filename = f"{model_name.split('/')[-1]}.onnx"
|
253 |
+
# convert_to_onnx(model_name, onnx_filename)
|
254 |
+
|
255 |
+
# quantized_path = None
|
256 |
+
# if quantize:
|
257 |
+
# quantized_path = onnx_filename.replace(".onnx", ".quantized.onnx")
|
258 |
+
# quantize_onnx_model(onnx_filename, quantized_path)
|
259 |
+
|
260 |
+
# return onnx_filename, quantized_path
|
261 |
+
|
262 |
+
|
263 |
+
# def create_inference(
|
264 |
+
# model_name=None, use_onnx=False, onnx_path=None, use_gpu=True, use_onnx_quantize=False
|
265 |
+
# ):
|
266 |
+
# """
|
267 |
+
# Create optimized inference instance
|
268 |
+
|
269 |
+
# Args:
|
270 |
+
# model_name: Model key from WAVE2VEC2_MODELS or full HuggingFace model name (default: uses DEFAULT_MODEL)
|
271 |
+
# use_onnx: Whether to use ONNX runtime
|
272 |
+
# onnx_path: Path to ONNX model file
|
273 |
+
# use_gpu: Whether to use GPU if available
|
274 |
+
# use_onnx_quantize: Whether to use quantized ONNX model
|
275 |
+
|
276 |
+
# Returns:
|
277 |
+
# Inference instance
|
278 |
+
# """
|
279 |
+
# # Get the actual model name
|
280 |
+
# actual_model_name = get_model_name(model_name)
|
281 |
+
|
282 |
+
# if use_onnx:
|
283 |
+
# if not onnx_path or not os.path.exists(onnx_path):
|
284 |
+
# # Convert to ONNX if path not provided or doesn't exist
|
285 |
+
# onnx_filename = f"{actual_model_name.split('/')[-1]}.onnx"
|
286 |
+
# convert_to_onnx(actual_model_name, onnx_filename)
|
287 |
+
# onnx_path = onnx_filename
|
288 |
+
|
289 |
+
# if use_onnx_quantize:
|
290 |
+
# quantized_path = onnx_path.replace(".onnx", ".quantized.onnx")
|
291 |
+
# if not os.path.exists(quantized_path):
|
292 |
+
# quantize_onnx_model(onnx_path, quantized_path)
|
293 |
+
# onnx_path = quantized_path
|
294 |
+
|
295 |
+
# print(f"Using ONNX model: {onnx_path}")
|
296 |
+
# return Wave2Vec2ONNXInference(model_name, onnx_path, use_gpu)
|
297 |
+
# else:
|
298 |
+
# print("Using PyTorch model")
|
299 |
+
# return Wave2Vec2Inference(model_name, use_gpu)
|
300 |
+
|
301 |
+
|
302 |
+
# if __name__ == "__main__":
|
303 |
+
# import time
|
304 |
+
|
305 |
+
# # Display available models
|
306 |
+
# print("Available Wave2Vec2 models:")
|
307 |
+
# for key, model_name in get_available_models().items():
|
308 |
+
# print(f" {key}: {model_name}")
|
309 |
+
# print(f"\nDefault model: {DEFAULT_MODEL}")
|
310 |
+
# print()
|
311 |
+
|
312 |
+
# # Test with different models
|
313 |
+
# test_models = ["english_large", "multilingual", "english_960h"]
|
314 |
+
# test_file = "test.wav"
|
315 |
+
|
316 |
+
# if not os.path.exists(test_file):
|
317 |
+
# print(f"Test file {test_file} not found. Please provide a valid audio file.")
|
318 |
+
# print("Creating example usage without actual file...")
|
319 |
+
|
320 |
+
# # Example usage without file
|
321 |
+
# print("\n=== Example Usage ===")
|
322 |
+
|
323 |
+
# # Using default model
|
324 |
+
# print("1. Using default model:")
|
325 |
+
# asr_default = create_inference()
|
326 |
+
# print(f" Model loaded: {asr_default.model_name}")
|
327 |
+
|
328 |
+
# # Using model key
|
329 |
+
# print("\n2. Using model key 'english_large':")
|
330 |
+
# asr_key = create_inference("english_large")
|
331 |
+
# print(f" Model loaded: {asr_key.model_name}")
|
332 |
+
|
333 |
+
# # Using full model name
|
334 |
+
# print("\n3. Using full model name:")
|
335 |
+
# asr_full = create_inference("facebook/wav2vec2-base-960h")
|
336 |
+
# print(f" Model loaded: {asr_full.model_name}")
|
337 |
+
|
338 |
+
# exit(0)
|
339 |
|
340 |
+
# # Test different model configurations
|
341 |
+
# for model_key in test_models:
|
342 |
+
# print(f"\n=== Testing model: {model_key} ===")
|
343 |
+
|
344 |
+
# # Test different configurations
|
345 |
+
# configs = [
|
346 |
+
# {"use_onnx": False, "use_gpu": True},
|
347 |
+
# {"use_onnx": True, "use_gpu": True, "use_onnx_quantize": False},
|
348 |
+
# ]
|
349 |
|
350 |
+
# for config in configs:
|
351 |
+
# print(f"\nConfig: {config}")
|
352 |
|
353 |
+
# # Create inference instance with model selection
|
354 |
+
# asr = create_inference(model_key, **config)
|
|
|
355 |
|
356 |
+
# # Warm up
|
357 |
+
# asr.file_to_text(test_file)
|
358 |
|
359 |
+
# # Test performance
|
360 |
+
# times = []
|
361 |
+
# for i in range(3):
|
362 |
+
# start_time = time.time()
|
363 |
+
# text = asr.file_to_text(test_file)
|
364 |
+
# end_time = time.time()
|
365 |
+
# execution_time = end_time - start_time
|
366 |
+
# times.append(execution_time)
|
367 |
+
# print(f"Run {i+1}: {execution_time:.3f}s - {text[:50]}...")
|
368 |
+
|
369 |
+
# avg_time = sum(times) / len(times)
|
370 |
+
# print(f"Average time: {avg_time:.3f}s")
|
371 |
+
|
372 |
+
|
373 |
+
|
374 |
+
import torch
|
375 |
+
from transformers import (
|
376 |
+
Wav2Vec2ForCTC,
|
377 |
+
Wav2Vec2Processor,
|
378 |
+
AutoProcessor,
|
379 |
+
AutoModelForCTC,
|
380 |
+
)
|
381 |
+
|
382 |
+
import deepspeed
|
383 |
+
import librosa
|
384 |
+
import numpy as np
|
385 |
+
from typing import Optional, List, Union
|
386 |
+
|
387 |
+
|
388 |
+
def get_model_name(model_name: Optional[str] = None) -> str:
|
389 |
+
"""Helper function to get model name with default fallback"""
|
390 |
+
if model_name is None:
|
391 |
+
return "facebook/wav2vec2-large-robust-ft-libri-960h"
|
392 |
+
return model_name
|
393 |
|
394 |
|
395 |
class Wave2Vec2Inference:
|
396 |
+
def __init__(
|
397 |
+
self,
|
398 |
+
model_name: Optional[str] = None,
|
399 |
+
use_gpu: bool = True,
|
400 |
+
use_deepspeed: bool = True,
|
401 |
+
):
|
402 |
+
"""
|
403 |
+
Initialize Wav2Vec2 model for inference with optional DeepSpeed optimization.
|
404 |
+
|
405 |
+
Args:
|
406 |
+
model_name: HuggingFace model name or None for default
|
407 |
+
use_gpu: Whether to use GPU acceleration
|
408 |
+
use_deepspeed: Whether to use DeepSpeed optimization
|
409 |
+
"""
|
410 |
# Get the actual model name using helper function
|
411 |
self.model_name = get_model_name(model_name)
|
412 |
+
self.use_deepspeed = use_deepspeed
|
413 |
+
|
414 |
# Auto-detect device
|
415 |
if use_gpu:
|
416 |
if torch.backends.mps.is_available():
|
|
|
424 |
|
425 |
print(f"Using device: {self.device}")
|
426 |
print(f"Loading model: {self.model_name}")
|
427 |
+
print(f"DeepSpeed enabled: {self.use_deepspeed}")
|
428 |
|
429 |
# Check if model is XLSR and use appropriate processor/model
|
430 |
is_xlsr = "xlsr" in self.model_name.lower()
|
431 |
+
|
432 |
if is_xlsr:
|
433 |
print("Using Wav2Vec2Processor and Wav2Vec2ForCTC for XLSR model")
|
434 |
self.processor = Wav2Vec2Processor.from_pretrained(self.model_name)
|
|
|
437 |
print("Using AutoProcessor and AutoModelForCTC")
|
438 |
self.processor = AutoProcessor.from_pretrained(self.model_name)
|
439 |
self.model = AutoModelForCTC.from_pretrained(self.model_name)
|
440 |
+
|
441 |
+
# Initialize DeepSpeed if enabled
|
442 |
+
if self.use_deepspeed:
|
443 |
+
self._init_deepspeed()
|
444 |
+
else:
|
445 |
+
self.model.to(self.device)
|
446 |
+
self.model.eval()
|
447 |
+
self.ds_engine = None
|
448 |
|
449 |
# Disable gradients for inference
|
450 |
torch.set_grad_enabled(False)
|
451 |
|
452 |
+
def _init_deepspeed(self):
|
453 |
+
"""Initialize DeepSpeed inference engine"""
|
454 |
+
try:
|
455 |
+
# DeepSpeed configuration based on device
|
456 |
+
if self.device == "cuda":
|
457 |
+
ds_config = {
|
458 |
+
"tensor_parallel": {"tp_size": 1},
|
459 |
+
"dtype": torch.float32,
|
460 |
+
"replace_with_kernel_inject": True,
|
461 |
+
"enable_cuda_graph": False,
|
462 |
+
}
|
463 |
+
else:
|
464 |
+
ds_config = {
|
465 |
+
"tensor_parallel": {"tp_size": 1},
|
466 |
+
"dtype": torch.float32,
|
467 |
+
"replace_with_kernel_inject": False,
|
468 |
+
"enable_cuda_graph": False,
|
469 |
+
}
|
470 |
+
|
471 |
+
print("Initializing DeepSpeed inference engine...")
|
472 |
+
self.ds_engine = deepspeed.init_inference(self.model, **ds_config)
|
473 |
+
self.ds_engine.module.to(self.device)
|
474 |
+
|
475 |
+
except Exception as e:
|
476 |
+
print(f"DeepSpeed initialization failed: {e}")
|
477 |
+
print("Falling back to standard PyTorch inference...")
|
478 |
+
self.use_deepspeed = False
|
479 |
+
self.ds_engine = None
|
480 |
+
self.model.to(self.device)
|
481 |
+
self.model.eval()
|
482 |
+
|
483 |
+
def _get_model(self):
|
484 |
+
"""Get the appropriate model for inference"""
|
485 |
+
if self.use_deepspeed and self.ds_engine is not None:
|
486 |
+
return self.ds_engine.module
|
487 |
+
return self.model
|
488 |
+
|
489 |
+
def buffer_to_text(
|
490 |
+
self, audio_buffer: Union[np.ndarray, torch.Tensor, List]
|
491 |
+
) -> str:
|
492 |
+
"""
|
493 |
+
Convert audio buffer to text transcription.
|
494 |
+
|
495 |
+
Args:
|
496 |
+
audio_buffer: Audio data as numpy array, tensor, or list
|
497 |
+
|
498 |
+
Returns:
|
499 |
+
str: Transcribed text
|
500 |
+
"""
|
501 |
if len(audio_buffer) == 0:
|
502 |
return ""
|
503 |
|
504 |
# Convert to tensor
|
505 |
if isinstance(audio_buffer, np.ndarray):
|
506 |
audio_tensor = torch.from_numpy(audio_buffer).float()
|
507 |
+
elif isinstance(audio_buffer, list):
|
508 |
audio_tensor = torch.tensor(audio_buffer, dtype=torch.float32)
|
509 |
+
else:
|
510 |
+
audio_tensor = audio_buffer.float()
|
511 |
|
512 |
# Process audio
|
513 |
inputs = self.processor(
|
|
|
525 |
else None
|
526 |
)
|
527 |
|
528 |
+
# Get the appropriate model
|
529 |
+
model = self._get_model()
|
530 |
+
|
531 |
# Inference
|
532 |
with torch.no_grad():
|
533 |
if attention_mask is not None:
|
534 |
+
outputs = model(input_values, attention_mask=attention_mask)
|
535 |
else:
|
536 |
+
outputs = model(input_values)
|
537 |
+
|
538 |
+
# Handle different output formats
|
539 |
+
if hasattr(outputs, "logits"):
|
540 |
+
logits = outputs.logits
|
541 |
+
else:
|
542 |
+
logits = outputs
|
543 |
|
544 |
# Decode
|
545 |
predicted_ids = torch.argmax(logits, dim=-1)
|
|
|
549 |
transcription = self.processor.batch_decode(predicted_ids)[0]
|
550 |
return transcription.lower().strip()
|
551 |
|
552 |
+
def file_to_text(self, filename: str) -> str:
|
553 |
+
"""
|
554 |
+
Transcribe audio file to text.
|
555 |
+
|
556 |
+
Args:
|
557 |
+
filename: Path to audio file
|
558 |
+
|
559 |
+
Returns:
|
560 |
+
str: Transcribed text
|
561 |
+
"""
|
562 |
try:
|
563 |
audio_input, _ = librosa.load(filename, sr=16000, dtype=np.float32)
|
564 |
return self.buffer_to_text(audio_input)
|
|
|
566 |
print(f"Error loading audio file {filename}: {e}")
|
567 |
return ""
|
568 |
|
569 |
+
def batch_file_to_text(self, filenames: List[str]) -> List[str]:
|
570 |
+
"""
|
571 |
+
Transcribe multiple audio files to text.
|
572 |
+
|
573 |
+
Args:
|
574 |
+
filenames: List of audio file paths
|
575 |
+
|
576 |
+
Returns:
|
577 |
+
List[str]: List of transcribed texts
|
578 |
+
"""
|
579 |
+
results = []
|
580 |
+
for i, filename in enumerate(filenames):
|
581 |
+
print(f"Processing file {i+1}/{len(filenames)}: {filename}")
|
582 |
+
transcription = self.file_to_text(filename)
|
583 |
+
results.append(transcription)
|
584 |
+
if transcription:
|
585 |
+
print(f"Transcription: {transcription}")
|
586 |
+
else:
|
587 |
+
print("Failed to transcribe")
|
588 |
+
return results
|
589 |
|
590 |
+
def transcribe_with_confidence(
|
591 |
+
self, audio_buffer: Union[np.ndarray, torch.Tensor]
|
592 |
+
) -> tuple:
|
593 |
+
"""
|
594 |
+
Transcribe audio and return confidence scores.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
595 |
|
596 |
+
Args:
|
597 |
+
audio_buffer: Audio data
|
|
|
598 |
|
599 |
+
Returns:
|
600 |
+
tuple: (transcription, confidence_scores)
|
601 |
+
"""
|
602 |
if len(audio_buffer) == 0:
|
603 |
+
return "", []
|
604 |
|
605 |
# Convert to tensor
|
606 |
if isinstance(audio_buffer, np.ndarray):
|
607 |
audio_tensor = torch.from_numpy(audio_buffer).float()
|
608 |
else:
|
609 |
+
audio_tensor = audio_buffer.float()
|
610 |
|
611 |
# Process audio
|
612 |
inputs = self.processor(
|
613 |
audio_tensor,
|
614 |
sampling_rate=16_000,
|
615 |
+
return_tensors="pt",
|
616 |
padding=True,
|
617 |
)
|
618 |
|
619 |
+
input_values = inputs.input_values.to(self.device)
|
620 |
+
attention_mask = (
|
621 |
+
inputs.attention_mask.to(self.device)
|
622 |
+
if "attention_mask" in inputs
|
623 |
+
else None
|
624 |
+
)
|
625 |
+
|
626 |
+
model = self._get_model()
|
627 |
|
628 |
+
# Inference
|
629 |
+
with torch.no_grad():
|
630 |
+
if attention_mask is not None:
|
631 |
+
outputs = model(input_values, attention_mask=attention_mask)
|
632 |
+
else:
|
633 |
+
outputs = model(input_values)
|
634 |
|
635 |
+
if hasattr(outputs, "logits"):
|
636 |
+
logits = outputs.logits
|
637 |
+
else:
|
638 |
+
logits = outputs
|
|
|
|
|
|
|
639 |
|
640 |
+
# Get probabilities and confidence scores
|
641 |
+
probs = torch.nn.functional.softmax(logits, dim=-1)
|
642 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
643 |
|
644 |
+
# Calculate confidence as max probability for each prediction
|
645 |
+
max_probs = torch.max(probs, dim=-1)[0]
|
646 |
+
confidence_scores = max_probs.cpu().numpy().tolist()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
647 |
|
648 |
+
if self.device != "cpu":
|
649 |
+
predicted_ids = predicted_ids.cpu()
|
650 |
+
|
651 |
+
transcription = self.processor.batch_decode(predicted_ids)[0]
|
652 |
+
return transcription.lower().strip(), confidence_scores
|
653 |
+
|
654 |
+
def cleanup(self):
|
655 |
+
"""Clean up resources"""
|
656 |
+
if hasattr(self, "ds_engine") and self.ds_engine is not None:
|
657 |
+
del self.ds_engine
|
658 |
+
if hasattr(self, "model"):
|
659 |
+
del self.model
|
660 |
+
if hasattr(self, "processor"):
|
661 |
+
del self.processor
|
662 |
+
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
663 |
+
|
664 |
+
def __del__(self):
|
665 |
+
"""Destructor to clean up resources"""
|
666 |
+
self.cleanup()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/apis/controllers/speaking_controller.py
CHANGED
@@ -14,10 +14,12 @@ import Levenshtein
|
|
14 |
from dataclasses import dataclass
|
15 |
from enum import Enum
|
16 |
import os
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
21 |
from src.utils.vietnamese_tips import vietnamese_tips
|
22 |
|
23 |
# Download required NLTK data
|
@@ -78,9 +80,7 @@ class EnhancedWav2Vec2CharacterASR:
|
|
78 |
export_to_onnx(model_name, quantize=quantized)
|
79 |
|
80 |
# Use optimized inference
|
81 |
-
self.model =
|
82 |
-
model_name=model_name, use_onnx=onnx, use_onnx_quantize=quantized
|
83 |
-
)
|
84 |
|
85 |
def transcribe_with_features(self, audio_path: str, retry_count: int = 0) -> Dict:
|
86 |
"""Enhanced transcription with audio features for prosody analysis - Optimized with retry mechanism"""
|
|
|
14 |
from dataclasses import dataclass
|
15 |
from enum import Enum
|
16 |
import os
|
17 |
+
|
18 |
+
# from src.AI_Models.wave2vec_inference import (
|
19 |
+
# create_inference,
|
20 |
+
# export_to_onnx,
|
21 |
+
# )
|
22 |
+
from src.AI_Models.wave2vec_inference import Wave2Vec2Inference
|
23 |
from src.utils.vietnamese_tips import vietnamese_tips
|
24 |
|
25 |
# Download required NLTK data
|
|
|
80 |
export_to_onnx(model_name, quantize=quantized)
|
81 |
|
82 |
# Use optimized inference
|
83 |
+
self.model = Wave2Vec2Inference(model_name, use_gpu=False, use_deepspeed=True)
|
|
|
|
|
84 |
|
85 |
def transcribe_with_features(self, audio_path: str, retry_count: int = 0) -> Dict:
|
86 |
"""Enhanced transcription with audio features for prosody analysis - Optimized with retry mechanism"""
|
src/apis/routes/speaking_route.py
CHANGED
@@ -511,7 +511,10 @@ async def assess_pronunciation(
|
|
511 |
await optimize_post_assessment_processing(result, reference_text)
|
512 |
|
513 |
# Add processing time
|
|
|
514 |
processing_time = time.time() - start_time
|
|
|
|
|
515 |
result["processing_info"]["processing_time"] = processing_time
|
516 |
|
517 |
# Convert numpy types for JSON serialization
|
|
|
511 |
await optimize_post_assessment_processing(result, reference_text)
|
512 |
|
513 |
# Add processing time
|
514 |
+
|
515 |
processing_time = time.time() - start_time
|
516 |
+
if "processing_info" not in result:
|
517 |
+
result["processing_info"] = {}
|
518 |
result["processing_info"]["processing_time"] = processing_time
|
519 |
|
520 |
# Convert numpy types for JSON serialization
|