Spaces:
Runtime error
Runtime error
Add application file
Browse files- anekdoty.txt +0 -0
- app.py +95 -0
- lerning.py +230 -0
- model.pt +3 -0
- requirements.txt +58 -0
anekdoty.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
app.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy
|
2 |
+
import streamlit as st
|
3 |
+
import torch
|
4 |
+
|
5 |
+
st.title('Генерация текста GPT-моделью')
|
6 |
+
st.subheader('Это приложение показывает разницу в генерации текста моделью rugpt3small, обученной на документах общей тематики и этой же моделью, дообученной на анекдотах')
|
7 |
+
# Загружаем токенайзер модели
|
8 |
+
from transformers import GPT2Tokenizer
|
9 |
+
tokenizer = GPT2Tokenizer.from_pretrained('sberbank-ai/rugpt3small_based_on_gpt2')
|
10 |
+
|
11 |
+
from transformers import GPT2LMHeadModel
|
12 |
+
|
13 |
+
# Эту модель просто подгружаем
|
14 |
+
model_init = GPT2LMHeadModel.from_pretrained(
|
15 |
+
'sberbank-ai/rugpt3small_based_on_gpt2',
|
16 |
+
output_attentions = False,
|
17 |
+
output_hidden_states = False,
|
18 |
+
)
|
19 |
+
|
20 |
+
# Это обученная модель, в нее загружаем веса
|
21 |
+
model = GPT2LMHeadModel.from_pretrained(
|
22 |
+
'sberbank-ai/rugpt3small_based_on_gpt2',
|
23 |
+
output_attentions = False,
|
24 |
+
output_hidden_states = False,
|
25 |
+
)
|
26 |
+
|
27 |
+
m = torch.load('model.pt')
|
28 |
+
model.load_state_dict(m)
|
29 |
+
|
30 |
+
|
31 |
+
str = st.text_input('Введите 1-4 слова начала текста, и подождите минутку', 'Мужик спрашивает у официанта')
|
32 |
+
|
33 |
+
# модель без дообучения
|
34 |
+
# prompt – строка, которую примет на вход и продолжит модель
|
35 |
+
|
36 |
+
# токенизируем строку
|
37 |
+
prompt = tokenizer.encode(str, return_tensors='pt')
|
38 |
+
|
39 |
+
# out будет содержать результаты генерации в виде списка
|
40 |
+
out1 = model_init.generate(
|
41 |
+
# входная строка
|
42 |
+
input_ids=prompt,
|
43 |
+
# максимальная длина генерируемой последовательности
|
44 |
+
max_length=150,
|
45 |
+
# num_beams
|
46 |
+
num_beams=5,
|
47 |
+
# применяем сэмплирование
|
48 |
+
do_sample=True,
|
49 |
+
# применяем температуру
|
50 |
+
temperature=1.,
|
51 |
+
# топ слов по вероятности
|
52 |
+
top_k=50,
|
53 |
+
# топ слов по суммарной вероятности
|
54 |
+
top_p=0.6,
|
55 |
+
# сколько (постараться) не повторять n_gram подряд
|
56 |
+
no_repeat_ngram_size=3,
|
57 |
+
# сколько вернуть генераций
|
58 |
+
num_return_sequences=3,
|
59 |
+
).numpy() #).cpu().numpy()
|
60 |
+
|
61 |
+
st.write('\n------------------\n')
|
62 |
+
st.subheader('Тексты на модели, обученной документами всех тематик:')
|
63 |
+
# out содержит результаты
|
64 |
+
# декодируем и печатаем
|
65 |
+
n = 0
|
66 |
+
for out_ in out1:
|
67 |
+
n += 1
|
68 |
+
st.write(tokenizer.decode(out_).rpartition('.')[0],'.')
|
69 |
+
st.write('\n------------------\n')
|
70 |
+
# print(tokenizer.decode(out_))
|
71 |
+
|
72 |
+
|
73 |
+
# дообученная модель
|
74 |
+
with torch.inference_mode():
|
75 |
+
# prompt = 'Мужик спрашивает официанта'
|
76 |
+
# prompt = tokenizer.encode(str, return_tensors='pt')
|
77 |
+
out2 = model.generate(
|
78 |
+
input_ids=prompt,
|
79 |
+
max_length=150,
|
80 |
+
num_beams=1,
|
81 |
+
do_sample=True,
|
82 |
+
temperature=1.,
|
83 |
+
top_k=5,
|
84 |
+
top_p=0.6,
|
85 |
+
no_repeat_ngram_size=2,
|
86 |
+
num_return_sequences=3,
|
87 |
+
).numpy() #).cpu().numpy()
|
88 |
+
|
89 |
+
st.subheader('Тексты на модели, обученной документами всех тематик и дообученной анекдотами:')
|
90 |
+
n = 0
|
91 |
+
for out_ in out2:
|
92 |
+
n += 1
|
93 |
+
st.write(tokenizer.decode(out_).rpartition('.')[0],'.')
|
94 |
+
# print(textwrap.fill(tokenizer.decode(out_), 100), end='\n------------------\n')
|
95 |
+
st.write('\n------------------\n')
|
lerning.py
ADDED
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
# !pip install -q transformers
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
# import pandas as pd
|
7 |
+
import re
|
8 |
+
# import random
|
9 |
+
|
10 |
+
import torch
|
11 |
+
# from tqdm.notebook import tqdm
|
12 |
+
import transformers
|
13 |
+
# from torch.optim import AdamW
|
14 |
+
|
15 |
+
import textwrap
|
16 |
+
|
17 |
+
# Загружаем токенайзер модели
|
18 |
+
from transformers import GPT2Tokenizer
|
19 |
+
tokenizer = GPT2Tokenizer.from_pretrained('sberbank-ai/rugpt3small_based_on_gpt2')
|
20 |
+
|
21 |
+
# import re
|
22 |
+
with open('anekdoty.txt', encoding='utf8') as f:
|
23 |
+
text = f.read()
|
24 |
+
|
25 |
+
text = re.sub('\n{2,}', '\n', text)
|
26 |
+
print(text[:1000])
|
27 |
+
|
28 |
+
|
29 |
+
# токенизируем текст
|
30 |
+
tokens = tokenizer.encode(text, add_special_tokens=True)
|
31 |
+
tokens = np.array(tokens)
|
32 |
+
print(len(tokens))
|
33 |
+
tokens[:10]
|
34 |
+
|
35 |
+
|
36 |
+
# разбиваем на train и test
|
37 |
+
|
38 |
+
l = len(tokens)//15
|
39 |
+
train = []
|
40 |
+
test = []
|
41 |
+
for i in range(15):
|
42 |
+
if i%5 > 0:
|
43 |
+
train.extend(tokens[i*l: (i+1)*l])
|
44 |
+
else:
|
45 |
+
test.extend(tokens[i*l: (i+1)*l])
|
46 |
+
train = np.array(train)
|
47 |
+
test = np.array(test)
|
48 |
+
|
49 |
+
print(len(tokens), len(train), len(test))
|
50 |
+
|
51 |
+
|
52 |
+
|
53 |
+
from transformers import GPT2LMHeadModel
|
54 |
+
|
55 |
+
# Эту модель просто подгружаем и не будем дообучать
|
56 |
+
model_init = GPT2LMHeadModel.from_pretrained(
|
57 |
+
'sberbank-ai/rugpt3small_based_on_gpt2',
|
58 |
+
output_attentions = False,
|
59 |
+
output_hidden_states = False,
|
60 |
+
)
|
61 |
+
|
62 |
+
|
63 |
+
# Эту модель подгрузим и далее обучим
|
64 |
+
model = GPT2LMHeadModel.from_pretrained(
|
65 |
+
'sberbank-ai/rugpt3small_based_on_gpt2',
|
66 |
+
output_attentions = False,
|
67 |
+
output_hidden_states = False,
|
68 |
+
)
|
69 |
+
|
70 |
+
model.to(device);
|
71 |
+
model_init.to(device);
|
72 |
+
|
73 |
+
|
74 |
+
batch_size = 8
|
75 |
+
max_len = 256
|
76 |
+
epochs = 5
|
77 |
+
|
78 |
+
n_train = len(train)//(batch_size*max_len)
|
79 |
+
n_test = len(test)//(batch_size*max_len)
|
80 |
+
print(n_train, n_test)
|
81 |
+
|
82 |
+
# устанавливаем оптимизатор
|
83 |
+
optimizer = AdamW(model.parameters(), lr = 1e-5, eps = 1e-8)
|
84 |
+
|
85 |
+
# трансформеры с трудом обучаются, для них нужны разные способы повышения
|
86 |
+
# эффективности градиентного спуска
|
87 |
+
total_steps = n_train * epochs
|
88 |
+
scheduler = transformers.get_linear_schedule_with_warmup(optimizer,
|
89 |
+
num_warmup_steps = 0,
|
90 |
+
num_training_steps = total_steps)
|
91 |
+
|
92 |
+
|
93 |
+
# зададим точность, хотя ориентироваться будем на качество генерации
|
94 |
+
def accuracy(y_true, logits):
|
95 |
+
return torch.mean((y_true[1:] == torch.argmax(logits, dim=2)[:-1]).float()).detach().cpu().numpy()
|
96 |
+
|
97 |
+
|
98 |
+
|
99 |
+
# готовим тензоры для обучения размера [batch_size, max_len]
|
100 |
+
|
101 |
+
def prep_tensors(x, i, batch_size=batch_size, max_len=max_len):
|
102 |
+
batch_ids = x[i*batch_size*max_len: (i+1)*batch_size*max_len]
|
103 |
+
batch_ids = batch_ids.reshape(batch_size, max_len)
|
104 |
+
batch_ids = torch.tensor(batch_ids).to(device)
|
105 |
+
return batch_ids
|
106 |
+
|
107 |
+
|
108 |
+
# обучающий цикл
|
109 |
+
for epoch in range(1, epochs+1):
|
110 |
+
print(f'epoch {epoch}/{epochs} : training')
|
111 |
+
|
112 |
+
train_loss = []
|
113 |
+
train_acc = []
|
114 |
+
model.train()
|
115 |
+
pbar = range(n_train)
|
116 |
+
# pbar = tqdm(range(n_train))
|
117 |
+
for i in pbar:
|
118 |
+
batch_ids = prep_tensors(train, i)
|
119 |
+
|
120 |
+
model.zero_grad()
|
121 |
+
loss, logits, _ = model(batch_ids,
|
122 |
+
token_type_ids=None,
|
123 |
+
labels=batch_ids
|
124 |
+
).values()
|
125 |
+
|
126 |
+
loss.backward()
|
127 |
+
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
|
128 |
+
optimizer.step()
|
129 |
+
scheduler.step()
|
130 |
+
|
131 |
+
train_loss.append(loss.item())
|
132 |
+
train_acc.append(accuracy(batch_ids, logits))
|
133 |
+
print(f'acc {np.mean(train_acc):.4f} loss {np.mean(train_loss):.4f}')
|
134 |
+
# pbar.set_description(f'acc {np.mean(train_acc):.4f} loss {np.mean(train_loss):.4f}', refresh=True)
|
135 |
+
|
136 |
+
|
137 |
+
print(f'epoch {epoch}/{epochs} : validation')
|
138 |
+
model.eval()
|
139 |
+
val_acc = []
|
140 |
+
val_loss = []
|
141 |
+
pbar = range(n_test)
|
142 |
+
# pbar = tqdm(range(n_test))
|
143 |
+
for i in pbar:
|
144 |
+
batch_ids = prep_tensors(test, i)
|
145 |
+
with torch.no_grad():
|
146 |
+
loss, logits, _ = model(batch_ids,
|
147 |
+
token_type_ids=None,
|
148 |
+
labels=batch_ids
|
149 |
+
).values()
|
150 |
+
|
151 |
+
val_loss.append(loss.item())
|
152 |
+
val_acc.append(accuracy(batch_ids, logits))
|
153 |
+
print(f'acc {np.mean(val_acc):.4f} loss {np.mean(val_loss):.4f}')
|
154 |
+
# pbar.set_description(f'acc {np.mean(val_acc):.4f} loss {np.mean(val_loss):.4f}', refresh=True)
|
155 |
+
|
156 |
+
|
157 |
+
# Применим модель, которую мы не дообучали: просто для понимания разницы между дообученной на собственных данных моделью и предобученной.
|
158 |
+
# https://huggingface.co/transformers/main_classes/model.html#transformers.generation_utils.GenerationMixin.generate
|
159 |
+
# модель без дообучения
|
160 |
+
|
161 |
+
# prompt – строка, которую модель примет на вход и продолжит
|
162 |
+
prompt = 'Мужик спрашивает официанта'
|
163 |
+
|
164 |
+
# токенизируем строку
|
165 |
+
prompt = tokenizer.encode(prompt, return_tensors='pt').to(device)
|
166 |
+
|
167 |
+
# out будет содержать результаты генерации в виде списка
|
168 |
+
out = model_init.generate(
|
169 |
+
# входная строка
|
170 |
+
input_ids=prompt,
|
171 |
+
# максимальная длина генерируемой последовательности
|
172 |
+
max_length=250,
|
173 |
+
# num_beams
|
174 |
+
num_beams=5,
|
175 |
+
# применяем сэмплирование
|
176 |
+
do_sample=True,
|
177 |
+
# применяем температуру
|
178 |
+
temperature=55.,
|
179 |
+
# топ слов по вероятности
|
180 |
+
top_k=50,
|
181 |
+
# топ слов по суммарной вероятности
|
182 |
+
top_p=0.6,
|
183 |
+
# сколько (постараться) не повторять n_gram подряд
|
184 |
+
no_repeat_ngram_size=3,
|
185 |
+
# сколько вернуть генераций
|
186 |
+
num_return_sequences=7,
|
187 |
+
).cpu().numpy()
|
188 |
+
|
189 |
+
# out содержит результаты
|
190 |
+
|
191 |
+
|
192 |
+
# декодируем и печатаем
|
193 |
+
for out_ in out:
|
194 |
+
print(tokenizer.decode(out_))
|
195 |
+
|
196 |
+
|
197 |
+
# дообученная модель
|
198 |
+
with torch.inference_mode():
|
199 |
+
prompt = 'Мужик спрашивает официанта'
|
200 |
+
prompt = tokenizer.encode(prompt, return_tensors='pt').to(device)
|
201 |
+
out = model.generate(
|
202 |
+
input_ids=prompt,
|
203 |
+
max_length=150,
|
204 |
+
num_beams=1,
|
205 |
+
do_sample=True,
|
206 |
+
temperature=1.,
|
207 |
+
top_k=5,
|
208 |
+
top_p=0.6,
|
209 |
+
no_repeat_ngram_size=2,
|
210 |
+
num_return_sequences=7,
|
211 |
+
).cpu().numpy()
|
212 |
+
for out_ in out:
|
213 |
+
print(textwrap.fill(tokenizer.decode(out_), 100), end='\n------------------\n')
|
214 |
+
|
215 |
+
|
216 |
+
|
217 |
+
# Сохраняем веса обученной модели
|
218 |
+
torch.save(model.state_dict(), 'model.pt')
|
219 |
+
|
220 |
+
# Задаем класс модели (уже в streamlit/tg_bot)
|
221 |
+
model_finetuned = GPT2LMHeadModel.from_pretrained(
|
222 |
+
'sberbank-ai/rugpt3small_based_on_gpt2',
|
223 |
+
output_attentions = False,
|
224 |
+
output_hidden_states = False,
|
225 |
+
)
|
226 |
+
|
227 |
+
# Вешаем сохраненные веса на нашу модель
|
228 |
+
model = model_finetuned.load_state_dict(torch.load('model.pt'))
|
229 |
+
|
230 |
+
# -> <All keys matched successfully>
|
model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b1d617290b6cd70a70e637b9478be1f1c47b6c9ca361f59eb1e68382c206d4fc
|
3 |
+
size 551310221
|
requirements.txt
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
altair==4.2.0
|
2 |
+
attrs==22.1.0
|
3 |
+
blinker==1.5
|
4 |
+
cachetools==5.2.0
|
5 |
+
certifi==2022.12.7
|
6 |
+
charset-normalizer==2.1.1
|
7 |
+
click==8.1.3
|
8 |
+
commonmark==0.9.1
|
9 |
+
decorator==5.1.1
|
10 |
+
entrypoints==0.4
|
11 |
+
filelock==3.8.2
|
12 |
+
gitdb==4.0.10
|
13 |
+
GitPython==3.1.29
|
14 |
+
huggingface-hub==0.11.1
|
15 |
+
idna==3.4
|
16 |
+
importlib-metadata==5.1.0
|
17 |
+
Jinja2==3.1.2
|
18 |
+
jsonschema==4.17.3
|
19 |
+
MarkupSafe==2.1.1
|
20 |
+
numpy==1.23.5
|
21 |
+
nvidia-cublas-cu11==11.10.3.66
|
22 |
+
nvidia-cuda-nvrtc-cu11==11.7.99
|
23 |
+
nvidia-cuda-runtime-cu11==11.7.99
|
24 |
+
nvidia-cudnn-cu11==8.5.0.96
|
25 |
+
packaging==22.0
|
26 |
+
pandas==1.5.2
|
27 |
+
Pillow==9.3.0
|
28 |
+
protobuf==3.20.3
|
29 |
+
pyarrow==10.0.1
|
30 |
+
pydeck==0.8.0
|
31 |
+
Pygments==2.13.0
|
32 |
+
Pympler==1.0.1
|
33 |
+
pyrsistent==0.19.2
|
34 |
+
python-dateutil==2.8.2
|
35 |
+
pytz==2022.6
|
36 |
+
pytz-deprecation-shim==0.1.0.post0
|
37 |
+
PyYAML==6.0
|
38 |
+
regex==2022.10.31
|
39 |
+
requests==2.28.1
|
40 |
+
rich==12.6.0
|
41 |
+
semver==2.13.0
|
42 |
+
six==1.16.0
|
43 |
+
smmap==5.0.0
|
44 |
+
streamlit==1.16.0
|
45 |
+
tokenizers==0.13.2
|
46 |
+
toml==0.10.2
|
47 |
+
toolz==0.12.0
|
48 |
+
torch==1.13.1
|
49 |
+
tornado==6.2
|
50 |
+
tqdm==4.64.1
|
51 |
+
transformers==4.25.1
|
52 |
+
typing_extensions==4.4.0
|
53 |
+
tzdata==2022.7
|
54 |
+
tzlocal==4.2
|
55 |
+
urllib3==1.26.13
|
56 |
+
validators==0.20.0
|
57 |
+
watchdog==2.2.0
|
58 |
+
zipp==3.11.0
|