Spaces:
Sleeping
Sleeping
import os | |
import json | |
import random | |
import torch | |
import torchaudio | |
from torch.utils.data import Dataset, DataLoader | |
from huggingface_hub import upload_folder | |
from transformers.integrations import TensorBoardCallback | |
from sklearn.metrics import accuracy_score, precision_recall_fscore_support | |
from transformers import ( | |
Wav2Vec2FeatureExtractor, HubertConfig, HubertForSequenceClassification, | |
Trainer, TrainingArguments, | |
EarlyStoppingCallback | |
) | |
MODEL = "ntu-spml/distilhubert" # modelo base utilizado, para usar otro basta con cambiar esto | |
FEATURE_EXTRACTOR = Wav2Vec2FeatureExtractor.from_pretrained(MODEL) | |
seed = 123 | |
MAX_DURATION = 1.00 | |
SAMPLING_RATE = FEATURE_EXTRACTOR.sampling_rate # 16000 | |
token = os.getenv("HF_TOKEN") # TODO: probar a guardar el token en un archivo en local | |
config_file = "models_config.json" | |
clasificador = "class" | |
monitor = "mon" | |
batch_size = 16 | |
num_workers = 12 | |
class AudioDataset(Dataset): | |
def __init__(self, dataset_path, label2id, filter_white_noise): | |
self.dataset_path = dataset_path | |
self.label2id = label2id | |
self.filter_white_noise = filter_white_noise | |
self.file_paths = [] | |
self.labels = [] | |
for label_dir, label_id in self.label2id.items(): | |
label_path = os.path.join(self.dataset_path, label_dir) | |
if os.path.isdir(label_path): | |
for file_name in os.listdir(label_path): | |
audio_path = os.path.join(label_path, file_name) | |
self.file_paths.append(audio_path) | |
self.labels.append(label_id) | |
self.file_paths.sort(key=lambda x: x.split('_part')[0]) # no sé si influye | |
def __len__(self): | |
return len(self.file_paths) | |
def __getitem__(self, idx): | |
audio_path = self.file_paths[idx] | |
label = self.labels[idx] | |
input_values = self.preprocess_audio(audio_path) | |
return { | |
"input_values": input_values, | |
"labels": torch.tensor(label) | |
} | |
def preprocess_audio(self, audio_path): | |
waveform, sample_rate = torchaudio.load( | |
audio_path, | |
normalize=True, # Convierte a float32 | |
) | |
if sample_rate != SAMPLING_RATE: # Resamplear si no es 16kHz | |
resampler = torchaudio.transforms.Resample(sample_rate, SAMPLING_RATE) | |
waveform = resampler(waveform) | |
if waveform.shape[0] > 1: # Si es stereo, convertir a mono | |
waveform = waveform.mean(dim=0, keepdim=True) | |
waveform = waveform / (torch.max(torch.abs(waveform)) + 1e-6) # Normalizar, sin 1e-6 el accuracy es pésimo!! | |
max_length = int(SAMPLING_RATE * MAX_DURATION) | |
if waveform.shape[1] > max_length: | |
waveform = waveform[:, :max_length] # Truncar | |
else: | |
waveform = torch.nn.functional.pad(waveform, (0, max_length - waveform.shape[1])) # Padding | |
inputs = FEATURE_EXTRACTOR( | |
waveform.squeeze(), | |
sampling_rate=SAMPLING_RATE, # Hecho a mano, por si acaso | |
return_tensors="pt", | |
# max_length=int(SAMPLING_RATE * MAX_DURATION), | |
# truncation=True, # Hecho a mano | |
# padding=True, # Hecho a mano | |
) | |
return inputs.input_values.squeeze() | |
def is_white_noise(audio): | |
mean = torch.mean(audio) | |
std = torch.std(audio) | |
return torch.abs(mean) < 0.001 and std < 0.01 | |
def seed_everything(): | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed(seed) | |
torch.backends.cudnn.deterministic = True | |
torch.backends.cudnn.benchmark = False | |
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':16384:8' | |
def build_label_mappings(dataset_path): | |
label2id = {} | |
id2label = {} | |
label_id = 0 | |
for label_dir in os.listdir(dataset_path): | |
if os.path.isdir(os.path.join(dataset_path, label_dir)): | |
label2id[label_dir] = label_id | |
id2label[label_id] = label_dir | |
label_id += 1 | |
return label2id, id2label | |
def create_dataloader(dataset_path, filter_white_noise, test_size=0.2, shuffle=True, pin_memory=True): | |
label2id, id2label = build_label_mappings(dataset_path) | |
dataset = AudioDataset(dataset_path, label2id, filter_white_noise) | |
dataset_size = len(dataset) | |
indices = list(range(dataset_size)) | |
random.shuffle(indices) | |
split_idx = int(dataset_size * (1 - test_size)) | |
train_indices = indices[:split_idx] | |
test_indices = indices[split_idx:] | |
train_dataset = torch.utils.data.Subset(dataset, train_indices) | |
test_dataset = torch.utils.data.Subset(dataset, test_indices) | |
train_dataloader = DataLoader( | |
train_dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers, pin_memory=pin_memory | |
) | |
test_dataloader = DataLoader( | |
test_dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers, pin_memory=pin_memory | |
) | |
return train_dataloader, test_dataloader, label2id, id2label | |
def load_model(model_path, num_labels, label2id, id2label): | |
config = HubertConfig.from_pretrained( | |
pretrained_model_name_or_path=model_path, | |
num_labels=num_labels, | |
label2id=label2id, | |
id2label=id2label, | |
finetuning_task="audio-classification" | |
) | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = HubertForSequenceClassification.from_pretrained( # TODO: mirar parámetros. Posibles optimizaciones | |
pretrained_model_name_or_path=model_path, | |
config=config, | |
torch_dtype=torch.float32, | |
) | |
model.to(device) | |
return model | |
def train_params(dataset_path, filter_white_noise): | |
train_dataloader, test_dataloader, label2id, id2label = create_dataloader(dataset_path, filter_white_noise) | |
model = load_model(model_path=MODEL, num_labels=len(id2label), label2id=label2id, id2label=id2label) | |
return model, train_dataloader, test_dataloader, id2label | |
def predict_params(dataset_path, model_path, filter_white_noise): | |
_, _, label2id, id2label = create_dataloader(dataset_path, filter_white_noise) | |
model = load_model(model_path, num_labels=len(id2label), label2id=label2id, id2label=id2label) | |
return model, None, None, id2label | |
def compute_metrics(eval_pred): | |
predictions = torch.argmax(torch.tensor(eval_pred.predictions), dim=-1) | |
references = torch.tensor(eval_pred.label_ids) | |
accuracy = accuracy_score(references, predictions) | |
precision, recall, f1, _ = precision_recall_fscore_support(references, predictions, average='weighted') | |
return { | |
"accuracy": accuracy, | |
"precision": precision, | |
"recall": recall, | |
"f1": f1, | |
} | |
def main(training_args, output_dir, dataset_path, filter_white_noise): | |
seed_everything() | |
model, train_dataloader, test_dataloader, _ = train_params(dataset_path, filter_white_noise) | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
compute_metrics=compute_metrics, | |
train_dataset=train_dataloader.dataset, | |
eval_dataset=test_dataloader.dataset, | |
callbacks=[TensorBoardCallback(), EarlyStoppingCallback(early_stopping_patience=3)] | |
) | |
torch.cuda.empty_cache() # liberar memoria de la GPU | |
trainer.train() # se pueden modificar los parámetros para continuar el train | |
# trainer.save_model(output_dir) # Guardar modelo local. | |
os.makedirs(output_dir, exist_ok=True) # Crear carpeta | |
trainer.push_to_hub(token=token) # Subir modelo a perfil | |
upload_folder(repo_id=f"A-POR-LOS-8000/{output_dir}", folder_path=output_dir, token=token) # subir a organización y local | |
def load_config(model_name): | |
with open(config_file, 'r') as f: | |
config = json.load(f) | |
model_config = config[model_name] | |
training_args = TrainingArguments(**model_config["training_args"]) | |
model_config["training_args"] = training_args | |
return model_config | |
if __name__ == "__main__": | |
config = load_config(clasificador) # PARA CAMBIAR MODELOS | |
filter_white_noise = True | |
# config = load_config(monitor) # PARA CAMBIAR MODELOS | |
# filter_white_noise = False | |
training_args = config["training_args"] | |
output_dir = config["output_dir"] | |
dataset_path = config["dataset_path"] | |
main(training_args, output_dir, dataset_path, filter_white_noise) | |