CHATBOT / app.py
Marcos12886's picture
TODO FUNCIONANDO LOCAL
53f6532
raw
history blame
6.77 kB
import os
import torch
import gradio as gr
from huggingface_hub import InferenceClient
from model import predict_params, AudioDataset
from interfaz import estilo, my_theme
token = os.getenv("HF_TOKEN")
client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct", token=token)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_class, id2label_class = predict_params(
model_path="distilhubert-finetuned-mixed-data",
dataset_path="data/mixed_data",
filter_white_noise=True,
undersample_normal=True
)
model_mon, id2label_mon = predict_params(
model_path="distilhubert-finetuned-cry-detector",
dataset_path="data/baby_cry_detection",
filter_white_noise=False,
undersample_normal=False
)
def call(audiopath, model, dataset_path, filter_white_noise, undersample_normal):
model.to(device)
model.eval()
audio_dataset = AudioDataset(dataset_path, {}, filter_white_noise, undersample_normal)
processed_audio = audio_dataset.preprocess_audio(audiopath)
inputs = {"input_values": processed_audio.to(device).unsqueeze(0)}
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
return logits
def predict(audio_path_pred):
with torch.no_grad():
logits = call(audio_path_pred, model=model_class, dataset_path="data/mixed_data", filter_white_noise=True, undersample_normal=True)
predicted_class_ids_class = torch.argmax(logits, dim=-1).item()
label_class = id2label_class[predicted_class_ids_class]
label_mapping = {0: 'Dolor', 1: 'Cansancio/Incomodidad', 2: 'Hambre', 3: 'Problemas para respirar'}
label_class = label_mapping.get(predicted_class_ids_class, label_class)
return label_class
def predict_stream(audio_path_stream):
with torch.no_grad():
logits = call(audio_path_stream, model=model_mon, dataset_path="data/baby_cry_detection", filter_white_noise=False, undersample_normal=False)
probabilities = torch.nn.functional.softmax(logits, dim=-1)
crying_probabilities = probabilities[:, 1]
avg_crying_probability = crying_probabilities.mean()*100
if avg_crying_probability < 15:
label_class = predict(audio_path_stream)
return "Está llorando por:", f"{label_class}. Probabilidad: {avg_crying_probability:.1f}%"
else:
return "No está llorando.", f"Probabilidad: {avg_crying_probability:.1f}%"
def decibelios(audio_path_stream):
with torch.no_grad():
logits = call(audio_path_stream, model=model_mon, dataset_path="data/baby_cry_detection", filter_white_noise=False, undersample_normal=False)
rms = torch.sqrt(torch.mean(torch.square(logits)))
db_level = 20 * torch.log10(rms + 1e-6).item()
return db_level
def mostrar_decibelios(audio_path_stream, visual_threshold):
db_level = decibelios(audio_path_stream)
if db_level < visual_threshold:
return f"Prediciendo. Decibelios: {db_level:.2f}"
elif db_level > visual_threshold:
return "No detectamos ruido..."
def predict_stream_decib(audio_path_stream, visual_threshold):
db_level = decibelios(audio_path_stream)
if db_level < visual_threshold:
llorando, probabilidad = predict_stream(audio_path_stream)
return f"{llorando} {probabilidad}"
else:
return ""
def chatbot_config(message, history: list[tuple[str, str]]):
system_message = "You are a Chatbot specialized in baby health and care."
max_tokens = 512
temperature = 0.7
top_p = 0.95
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message_response in client.chat_completion(messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p):
token = message_response.choices[0].delta.content
response += token
yield response
def cambiar_pestaña():
return gr.update(visible=False), gr.update(visible=True)
with gr.Blocks(theme=my_theme) as demo:
estilo()
with gr.Column(visible=True) as chatbot:
gr.Markdown("<h2>Asistente</h2>")
gr.ChatInterface(
chatbot_config # TODO: Mirar argumentos
)
gr.Markdown("Este chatbot no sustituye a un profesional de la salud. Ante cualquier preocupación o duda, consulta con tu pediatra.")
with gr.Row():
with gr.Column():
gr.Markdown("<h2>Predictor</h2>")
boton_predictor = gr.Button("Prueba el predictor")
gr.Markdown("<p>Descubre por qué llora tu bebé</p>")
with gr.Column():
gr.Markdown("<h2>Monitor</h2>")
boton_monitor = gr.Button("Prueba el monitor")
gr.Markdown("<p>Monitoriza si tu hijo está llorando y por qué, sin levantarte del sofá</p>")
with gr.Column(visible=False) as pag_predictor:
gr.Markdown("<h2>Predictor</h2>")
audio_input = gr.Audio(
min_length=1.0,
format="wav",
label="Baby recorder",
type="filepath",
)
gr.Button("¿Por qué llora?").click(
predict,
inputs=audio_input,
outputs=gr.Textbox(label="Tu bebé llora por:")
)
gr.Button("Volver a la pantalla inicial").click(cambiar_pestaña, outputs=[pag_predictor, chatbot])
with gr.Column(visible=False) as pag_monitor:
gr.Markdown("<h2>Monitor</h2>")
audio_stream = gr.Audio(
format="wav",
label="Baby recorder",
type="filepath",
streaming=True
)
threshold_db = gr.Slider(
minimum=0,
maximum=100,
step=1,
value=30,
label="Umbral de dB para activar la predicción"
)
audio_stream.stream(
mostrar_decibelios,
inputs=[audio_stream, threshold_db],
outputs=gr.Textbox(value="Esperando...", label="Estado")
)
audio_stream.stream(
predict_stream_decib,
inputs=[audio_stream, threshold_db],
outputs=gr.Textbox(value="", label="Tu bebé:")
)
gr.Button("Volver a la pantalla inicial").click(cambiar_pestaña, outputs=[pag_monitor, chatbot])
boton_predictor.click(cambiar_pestaña, outputs=[chatbot, pag_predictor])
boton_monitor.click(cambiar_pestaña, outputs=[chatbot, pag_monitor])
demo.launch(share=True)