A-New-Day-001 commited on
Commit
5a1e954
·
1 Parent(s): fd9c582

Upload 7 files

Browse files
screens/__pycache__/chat_bot.cpython-311.pyc ADDED
Binary file (10.7 kB). View file
 
screens/__pycache__/chat_bot_2.cpython-311.pyc ADDED
Binary file (10.2 kB). View file
 
screens/__pycache__/search.cpython-311.pyc ADDED
Binary file (17.9 kB). View file
 
screens/chat_bot.py ADDED
@@ -0,0 +1,187 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ #Import library
3
+ import yaml
4
+ #load config.yml and parse into variables
5
+ with open("config.yml", "r") as ymlfile:
6
+ cfg = yaml.safe_load(ymlfile)
7
+ _BARD_API_KEY = cfg["API_KEY"]["Bard"]
8
+ main_path = cfg["LOCAL_PATH"]["main_path"]
9
+ chat_context_length = cfg["CHAT"]["chat_context_length"]
10
+ model_name = cfg["EMBEDDINGS"]["HuggingFaceEmbeddings"]["model_name"]
11
+ model_kwargs = cfg["EMBEDDINGS"]["HuggingFaceEmbeddings"]["model_kwargs"]
12
+ chunk_size = cfg["CHUNK"]["chunk_size"]
13
+ chunk_overlap = cfg["CHUNK"]["chunk_overlap"]
14
+
15
+ from langchain.vectorstores import Chroma
16
+ import streamlit as st
17
+ from langchain.embeddings import HuggingFaceEmbeddings
18
+ from langchain.chains import ConversationalRetrievalChain
19
+ from langchain.prompts.chat import ChatPromptTemplate, HumanMessagePromptTemplate, SystemMessagePromptTemplate
20
+ # Bard
21
+ from bardapi import Bard
22
+ from typing import Any, List, Mapping, Optional
23
+ from langchain.llms.base import LLM
24
+ from langchain.callbacks.manager import CallbackManagerForLLMRun
25
+
26
+ from streamlit_feedback import streamlit_feedback
27
+
28
+
29
+ #define Bard
30
+ class BardLLM(LLM):
31
+
32
+ @property
33
+ def _llm_type(self) -> str:
34
+ return "custom"
35
+
36
+ def _call(
37
+ self,
38
+ prompt: str,
39
+ stop: Optional[List[str]] = None,
40
+ run_manager: Optional[CallbackManagerForLLMRun] = None,
41
+ ) -> str:
42
+ response = Bard(token=_BARD_API_KEY).get_answer(prompt)['content']
43
+ return response
44
+
45
+ @property
46
+ def _identifying_params(self) -> Mapping[str, Any]:
47
+ """Get the identifying parameters."""
48
+ return {}
49
+
50
+
51
+
52
+ def load_embeddings():
53
+ embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs)
54
+ chroma_index = Chroma(persist_directory=main_path+"/vectorstore/chroma_db", embedding_function=embeddings)
55
+ print("Successfully loading embeddings and indexing")
56
+ return chroma_index
57
+
58
+
59
+
60
+ def ask_with_memory(vector_store, question, chat_history_1=[], document_description=""):
61
+
62
+ llm=BardLLM()
63
+ retriever = vector_store.as_retriever( # now the vs can return documents
64
+ search_type='similarity', search_kwargs={'k': 3})
65
+
66
+ general_system_template = f"""
67
+ You are a professional consultant at a real estate consulting company, providing consulting services \
68
+ to customers on real estate development strategies, real estate news and real estate law.\
69
+ Your role is to communicate with customer, then interact with them about their concerns about real estates.\
70
+ Once the customer has been provided their question,\
71
+ then you obtain some documents about real estate laws or real estate news related to their question.\
72
+ Then you will examine these documents .\
73
+ You must provide the answer based on these documents which means\
74
+ using only the heading and piece of context to answer the questions at the end.\
75
+ If you don't know the answer just say that you don't know, don't try to make up an answer. \
76
+ If the question is not in the field of real estate , just answer that you do not know. \
77
+ You respond in a short, very conversational friendly style.\
78
+ Answer only in Vietnamese\
79
+ ----
80
+ HEADING: ({document_description})
81
+ CONTEXT: {{context}}
82
+ ----
83
+ """
84
+ general_user_template = """Here is the next question, remember to only answer if you can from the provided context.
85
+ If the question is not relevant to real estate , just answer that you do not know, do not create your own answer.
86
+ Only respond in Vietnamese.
87
+ QUESTION:```{question}```"""
88
+
89
+ messages_1 = [
90
+ SystemMessagePromptTemplate.from_template(general_system_template),
91
+ HumanMessagePromptTemplate.from_template(general_user_template)
92
+ ]
93
+ qa_prompt = ChatPromptTemplate.from_messages( messages_1 )
94
+
95
+
96
+ crc = ConversationalRetrievalChain.from_llm(llm, retriever, combine_docs_chain_kwargs={'prompt': qa_prompt})
97
+ result = crc({'question': question, 'chat_history': chat_history_1})
98
+ return result
99
+
100
+
101
+ def clear_history():
102
+ if "history_1" in st.session_state:
103
+ st.session_state.history_1 = []
104
+ st.session_state.messages_1 = []
105
+
106
+ # Define a function for submitting feedback
107
+ def _submit_feedback(user_response, emoji=None):
108
+ st.toast(f"Feedback submitted: {user_response}", icon=emoji)
109
+ return user_response.update({"some metadata": 123})
110
+
111
+
112
+ def format_chat_history(chat_history_1):
113
+ formatted_history = ""
114
+ for entry in chat_history_1:
115
+ question, answer = entry
116
+ # Added an extra '\n' for the blank line
117
+ formatted_history += f"Question: {question}\nAnswer: {answer}\n\n"
118
+ return formatted_history
119
+
120
+ def run_chatbot():
121
+ with st.sidebar.title("Sidebar"):
122
+ if st.button("Clear History"):
123
+ clear_history()
124
+
125
+ st.title("🦾 Chatbot (news,law)")
126
+
127
+ # Initialize the chatbot and load embeddings
128
+ if "messages_1" not in st.session_state:
129
+ with st.spinner("Initializing, please wait a moment!!!"):
130
+ st.session_state.vector_store = load_embeddings()
131
+ st.success("Finish!!!")
132
+ st.session_state["messages_1"] = [{"role": "assistant", "content": "Tôi có thể giúp gì được cho bạn?"}]
133
+
134
+ messages_1 = st.session_state.messages_1
135
+ feedback_kwargs = {
136
+ "feedback_type": "thumbs",
137
+ "optional_text_label": "Please provide extra information",
138
+ "on_submit": _submit_feedback,
139
+ }
140
+
141
+ for n, msg in enumerate(messages_1):
142
+ st.chat_message(msg["role"]).write(msg["content"])
143
+
144
+ if msg["role"] == "assistant" and n > 1:
145
+ feedback_key = f"feedback_{int(n/2)}"
146
+
147
+ if feedback_key not in st.session_state:
148
+ st.session_state[feedback_key] = None
149
+
150
+ streamlit_feedback(
151
+ **feedback_kwargs,
152
+ key=feedback_key,
153
+ )
154
+
155
+
156
+ chat_history_placeholder = st.empty()
157
+ if "history_1" not in st.session_state:
158
+ st.session_state.history_1 = []
159
+
160
+ if prompt := st.chat_input():
161
+ if "vector_store" in st.session_state:
162
+ vector_store = st.session_state["vector_store"]
163
+
164
+ q = prompt
165
+
166
+ st.session_state.messages_1.append({"role": "user", "content": prompt})
167
+ st.chat_message("user").write(prompt)
168
+ with st.spinner("Thinking..."):
169
+ response = ask_with_memory(vector_store, q, st.session_state.history_1)
170
+
171
+ if len(st.session_state.history_1) >= chat_context_length:
172
+ st.session_state.history_1 = st.session_state.history_1[1:]
173
+
174
+ st.session_state.history_1.append((q, response['answer']))
175
+
176
+ chat_history_str = format_chat_history(st.session_state.history_1)
177
+
178
+ msg = {"role": "assistant", "content": response['answer']}
179
+ st.session_state.messages_1.append(msg)
180
+ st.chat_message("assistant").write(msg["content"])
181
+
182
+ # Display the feedback component after the chatbot responds
183
+ feedback_key = f"feedback_{len(st.session_state.messages_1) - 1}"
184
+ streamlit_feedback(
185
+ **feedback_kwargs,
186
+ key=feedback_key,
187
+ )
screens/chat_bot_2.py ADDED
@@ -0,0 +1,184 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ #Import library
3
+ import yaml
4
+ #load config.yml and parse into variables
5
+ with open("config2.yml", "r") as ymlfile:
6
+ cfg = yaml.safe_load(ymlfile)
7
+ _BARD_API_KEY = cfg["API_KEY"]["Bard"]
8
+ main_path = cfg["LOCAL_PATH"]["main_path"]
9
+ chat_context_length = cfg["CHAT"]["chat_context_length"]
10
+ model_name = cfg["EMBEDDINGS"]["HuggingFaceEmbeddings"]["model_name"]
11
+ model_kwargs = cfg["EMBEDDINGS"]["HuggingFaceEmbeddings"]["model_kwargs"]
12
+ chunk_size = cfg["CHUNK"]["chunk_size"]
13
+ chunk_overlap = cfg["CHUNK"]["chunk_overlap"]
14
+
15
+ import os
16
+ from dotenv import load_dotenv, find_dotenv
17
+ from langchain.vectorstores import Chroma
18
+ import streamlit.components.v1 as components
19
+ import streamlit as st
20
+ import sys
21
+ from langchain.embeddings import HuggingFaceEmbeddings
22
+ from langchain.chains import ConversationalRetrievalChain
23
+ from langchain.prompts.chat import ChatPromptTemplate, HumanMessagePromptTemplate, SystemMessagePromptTemplate
24
+ # Bard
25
+ from bardapi import Bard
26
+ from typing import Any, List, Mapping, Optional
27
+ from getpass import getpass
28
+ import os
29
+ from langchain.llms.base import LLM
30
+ from langchain.callbacks.manager import CallbackManagerForLLMRun
31
+
32
+ from streamlit_feedback import streamlit_feedback
33
+
34
+
35
+ #define Bard
36
+ class BardLLM(LLM):
37
+
38
+ @property
39
+ def _llm_type(self) -> str:
40
+ return "custom"
41
+
42
+ def _call(
43
+ self,
44
+ prompt: str,
45
+ stop: Optional[List[str]] = None,
46
+ run_manager: Optional[CallbackManagerForLLMRun] = None,
47
+ ) -> str:
48
+ response = Bard(token=_BARD_API_KEY).get_answer(prompt)['content']
49
+ return response
50
+
51
+ @property
52
+ def _identifying_params(self) -> Mapping[str, Any]:
53
+ """Get the identifying parameters."""
54
+ return {}
55
+
56
+
57
+
58
+ def load_embeddings():
59
+ embeddings = HuggingFaceEmbeddings(model_name=model_name, model_kwargs=model_kwargs)
60
+ chroma_index = Chroma(persist_directory="./chroma_index_1", embedding_function=embeddings)
61
+ print("Successfully loading embeddings and indexing")
62
+ return chroma_index
63
+
64
+
65
+
66
+ def ask_with_memory(vector_store, question, chat_history=[], document_description=""):
67
+
68
+ llm=BardLLM()
69
+ retriever = vector_store.as_retriever( # now the vs can return documents
70
+ search_type='similarity', search_kwargs={'k': 3})
71
+
72
+ general_system_template = f"""
73
+ You are a helpful and informative bot that answers questions posed below using provided context.
74
+ You have to be truthful. Do not recommend or propose any infomation of the properties.
75
+ Be sure to respond in a complete sentence, being comprehensive, including all information in the provided context.
76
+ Imagine you're talking to a friend and use natural language and phrasing.
77
+ You can only use Vietnamese do not use other languages.
78
+ ----
79
+ CONTEXT: {{context}}
80
+ ----
81
+ """
82
+ general_user_template = """Here is the next question, remember to only answer if you can from the provided context.
83
+ If the question is not relevant to real estate , just answer that you do not know, do not create your own answer.
84
+ Only respond in Vietnamese.
85
+ QUESTION:```{question}```"""
86
+
87
+ messages = [
88
+ SystemMessagePromptTemplate.from_template(general_system_template),
89
+ HumanMessagePromptTemplate.from_template(general_user_template)
90
+ ]
91
+ qa_prompt = ChatPromptTemplate.from_messages( messages )
92
+
93
+
94
+ crc = ConversationalRetrievalChain.from_llm(llm, retriever, combine_docs_chain_kwargs={'prompt': qa_prompt})
95
+ result = crc({'question': question, 'chat_history': chat_history})
96
+ return result
97
+
98
+
99
+ def clear_history():
100
+ if "history" in st.session_state:
101
+ st.session_state.history = []
102
+ st.session_state.messages = []
103
+
104
+ # Define a function for submitting feedback
105
+ def _submit_feedback(user_response, emoji=None):
106
+ st.toast(f"Feedback submitted: {user_response}", icon=emoji)
107
+ return user_response.update({"some metadata": 123})
108
+
109
+
110
+ def format_chat_history(chat_history):
111
+ formatted_history = ""
112
+ for entry in chat_history:
113
+ question, answer = entry
114
+ # Added an extra '\n' for the blank line
115
+ formatted_history += f"Question: {question}\nAnswer: {answer}\n\n"
116
+ return formatted_history
117
+
118
+ def run_chatbot_2():
119
+ with st.sidebar.title("Sidebar"):
120
+ if st.button("Clear History"):
121
+ clear_history()
122
+
123
+ st.title("🤖 Chatbot (property)")
124
+
125
+ # Initialize the chatbot and load embeddings
126
+ if "messages" not in st.session_state:
127
+ with st.spinner("Initializing, please wait a moment!!!"):
128
+ st.session_state.vector_store = load_embeddings()
129
+ st.success("Finish!!!")
130
+ st.session_state["messages"] = [{"role": "assistant", "content": "Tôi có thể giúp gì được cho bạn?"}]
131
+
132
+ messages = st.session_state.messages
133
+ feedback_kwargs = {
134
+ "feedback_type": "thumbs",
135
+ "optional_text_label": "Please provide extra information",
136
+ "on_submit": _submit_feedback,
137
+ }
138
+
139
+ for n, msg in enumerate(messages):
140
+ st.chat_message(msg["role"]).write(msg["content"])
141
+
142
+ if msg["role"] == "assistant" and n > 1:
143
+ feedback_key = f"feedback_{int(n/2)}"
144
+
145
+ if feedback_key not in st.session_state:
146
+ st.session_state[feedback_key] = None
147
+
148
+ streamlit_feedback(
149
+ **feedback_kwargs,
150
+ key=feedback_key,
151
+ )
152
+
153
+ chat_history_placeholder = st.empty()
154
+ if "history" not in st.session_state:
155
+ st.session_state.history = []
156
+
157
+ if prompt := st.chat_input():
158
+ if "vector_store" in st.session_state:
159
+ vector_store = st.session_state["vector_store"]
160
+
161
+ q = prompt
162
+
163
+ st.session_state.messages.append({"role": "user", "content": prompt})
164
+ st.chat_message("user").write(prompt)
165
+
166
+ response = ask_with_memory(vector_store, q, st.session_state.history)
167
+
168
+ if len(st.session_state.history) >= chat_context_length:
169
+ st.session_state.history = st.session_state.history[1:]
170
+
171
+ st.session_state.history.append((q, response['answer']))
172
+
173
+ chat_history_str = format_chat_history(st.session_state.history)
174
+
175
+ msg = {"role": "assistant", "content": response['answer']}
176
+ st.session_state.messages.append(msg)
177
+ st.chat_message("assistant").write(msg["content"])
178
+
179
+ # Display the feedback component after the chatbot responds
180
+ feedback_key = f"feedback_{len(st.session_state.messages) - 1}"
181
+ streamlit_feedback(
182
+ **feedback_kwargs,
183
+ key=feedback_key,
184
+ )
screens/index.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from screens.search import Search_Property
2
+ from screens.chat_bot import run_chatbot
3
+ from screens.chat_bot_2 import run_chatbot_2
4
+ from utils.index import get_hash
5
+
6
+ def get_routes():
7
+ screens = [
8
+
9
+ {
10
+ "component": Search_Property,
11
+ "name": "Search",
12
+ "icon": "search"
13
+ },
14
+ {
15
+ "component": run_chatbot,
16
+ "name": "Chatbot (news,law)",
17
+ "icon": "chat"
18
+ },
19
+ {
20
+ "component": run_chatbot_2,
21
+ "name": "Chatbot (property)",
22
+ "icon": "chat"
23
+ }
24
+ ]
25
+
26
+ return get_hash(screens)
screens/search.py ADDED
@@ -0,0 +1,234 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import os
3
+ import streamlit.components.v1 as components
4
+ from io import BytesIO
5
+ import requests
6
+ import ast
7
+
8
+ from langchain import PromptTemplate
9
+ from langchain.chains import RetrievalQA
10
+ from langchain.vectorstores import Chroma
11
+ from langchain.embeddings import SentenceTransformerEmbeddings
12
+ from bardapi import Bard
13
+ from typing import Any, List, Mapping, Optional
14
+
15
+ os.environ['_BARD_API_KEY'] = "aAhD1NyQqzeoXs8PclDOD_hvEI3N9uHnsn2F0isADM5FFwBfYxatJf1csSUTMo4TXLjOxA."
16
+
17
+ from langchain.llms.base import LLM
18
+ from langchain.callbacks.manager import CallbackManagerForLLMRun
19
+ class BardLLM(LLM):
20
+
21
+
22
+ @property
23
+ def _llm_type(self) -> str:
24
+ return "custom"
25
+
26
+ def _call(
27
+ self,
28
+ prompt: str,
29
+ stop: Optional[List[str]] = None,
30
+ run_manager: Optional[CallbackManagerForLLMRun] = None,
31
+ ) -> str:
32
+ response = Bard(token=os.environ['_BARD_API_KEY']).get_answer(prompt)['content']
33
+ return response
34
+
35
+ @property
36
+ def _identifying_params(self) -> Mapping[str, Any]:
37
+ """Get the identifying parameters."""
38
+ return {}
39
+
40
+ @st.cache_data
41
+ def get_image(url):
42
+ r = requests.get(url)
43
+ return BytesIO(r.content)
44
+
45
+
46
+ # Define global variables
47
+ embeddings = None
48
+ index = None
49
+ QUESTION_PROMPT = None
50
+ qa = None
51
+ result = []
52
+
53
+ # Custom session state class for managing pagination
54
+ class SessionState:
55
+ def __init__(self):
56
+ self.page_index = 0 # Initialize page index
57
+ self.database_loaded = False # Initialize database loaded state
58
+ self.all_results_displayed = False
59
+
60
+ # Create a session state object
61
+ session_state = SessionState()
62
+
63
+ # Define the search function outside of Search_Property
64
+ def display_search_results(result, start_idx, end_idx):
65
+ if result:
66
+ st.subheader("Search Results:")
67
+ for idx in range(start_idx, end_idx):
68
+ if idx >= len(result):
69
+ break
70
+ property_info = result[idx]
71
+ st.markdown(f"**Result {idx + 1}**")
72
+
73
+ # Display property information
74
+ image_path_urls = property_info.metadata['Image URL']
75
+ if image_path_urls is not None and not isinstance(image_path_urls, float):
76
+ # Convert the string to a Python list
77
+ imageUrls = ast.literal_eval(image_path_urls)
78
+
79
+ # Now, imageUrls is a list of strings
80
+ st.image(imageUrls[0],width=700)
81
+
82
+ st.markdown(f"🏡 {property_info.metadata['Title']}")
83
+ st.write(f"📍 Address: {property_info.metadata['Location']}")
84
+ st.markdown(f"💰 Price: {property_info.metadata['Price']} VND | 📏 Size: {property_info.metadata['Area']}")
85
+ st.markdown(f"📅 Published Date: {property_info.metadata['Time stamp']}")
86
+ col3, col4 = st.columns([2, 1])
87
+ with col3:
88
+ with st.expander("Full Property Information"):
89
+ st.write(f"🏡 Property Title: {property_info.metadata['Title']}")
90
+ st.write(f"📏 Size: {property_info.metadata['Area']}")
91
+ st.write(f"🏢 Category: {property_info.metadata['Category']}")
92
+ st.write(f"📝 Description: {property_info.metadata['Description']}")
93
+ st.write(f"💰 Price: {property_info.metadata['Price']} VND")
94
+ st.write(f"📅 Date: {property_info.metadata['Time stamp']}")
95
+ st.write(f"📍 Address: {property_info.metadata['Location']}")
96
+ st.write(f"🆔 ID: {property_info.metadata['ID']}")
97
+ if 'Estate type' in property_info.metadata and property_info.metadata['Estate type'] is not None and not isinstance(property_info.metadata['Estate type'], float):
98
+ st.write(f"🏠 Housing Type: {property_info.metadata['Estate type']}")
99
+ if 'Email' in property_info.metadata and property_info.metadata['Email'] is not None and not isinstance(property_info.metadata['Email'], float):
100
+ st.write(f"✉️ Email: {property_info.metadata['Email']}")
101
+ if 'Mobile Phone' in property_info.metadata and property_info.metadata['Mobile Phone'] is not None and not isinstance(property_info.metadata['Mobile Phone'], float):
102
+ st.write(f"📞 Phone: {property_info.metadata['Mobile Phone']}")
103
+ if 'Certification status' in property_info.metadata and property_info.metadata['Certification status'] is not None and not isinstance(property_info.metadata['Certification status'], float):
104
+ st.write(f"🏆 Certification status: {property_info.metadata['Certification status']}")
105
+ if 'Direction' in property_info.metadata and property_info.metadata['Direction'] is not None and not isinstance(property_info.metadata['Direction'], float):
106
+ st.write(f"🧭 Direction: {property_info.metadata['Direction']}")
107
+ if 'Rooms' in property_info.metadata and property_info.metadata['Rooms'] is not None and not isinstance(property_info.metadata['Rooms'], float):
108
+ st.write(f"🚪 Rooms: {property_info.metadata['Rooms']}")
109
+ if 'Bedrooms' in property_info.metadata and property_info.metadata['Bedrooms'] is not None and not isinstance(property_info.metadata['Bedrooms'], float):
110
+ st.write(f"🛏️ Bedrooms: {property_info.metadata['Bedrooms']}")
111
+ if 'Kitchen' in property_info.metadata and property_info.metadata['Kitchen'] is not None and not isinstance(property_info.metadata['Kitchen'], float):
112
+ st.write(f"🍽️ Kitchen: {property_info.metadata['Kitchen']}")
113
+ if 'Living room' in property_info.metadata and property_info.metadata['Living room'] is not None and not isinstance(property_info.metadata['Living room'], float):
114
+ st.write(f"🛋️ Living room: {property_info.metadata['Living room']}")
115
+ if 'Bathrooms' in property_info.metadata and property_info.metadata['Bathrooms'] is not None and not isinstance(property_info.metadata['Bathrooms'], float):
116
+ st.write(f"🚽 Bathrooms: {property_info.metadata['Bathrooms']}")
117
+ if 'Front width' in property_info.metadata and property_info.metadata['Front width'] is not None and not isinstance(property_info.metadata['Front width'], float):
118
+ st.write(f"📐 Front width: {property_info.metadata['Front width']}")
119
+ if 'Floor' in property_info.metadata and property_info.metadata['Floor'] is not None and not isinstance(property_info.metadata['Floor'], float):
120
+ st.write(f"🧱 Floor: {property_info.metadata['Floor']}")
121
+ if 'Parking Slot' in property_info.metadata and property_info.metadata['Parking Slot'] is not None and not isinstance(property_info.metadata['Parking Slot'], float):
122
+ st.write(f"🚗 Parking Slot: {property_info.metadata['Parking Slot']}")
123
+ if 'Seller name' in property_info.metadata and property_info.metadata['Seller name'] is not None and not isinstance(property_info.metadata['Seller name'], float):
124
+ st.write(f"👤 Seller Name: {property_info.metadata['Seller name']}")
125
+ if 'Seller type' in property_info.metadata and property_info.metadata['Seller type'] is not None and not isinstance(property_info.metadata['Seller type'], float):
126
+ st.write(f"👨‍💼 Seller type: {property_info.metadata['Seller type']}")
127
+ if 'Seller Address' in property_info.metadata and property_info.metadata['Seller Address'] is not None and not isinstance(property_info.metadata['Seller Address'], float):
128
+ st.write(f"📌 Seller Address: {property_info.metadata['Seller Address']}")
129
+ if 'Balcony Direction' in property_info.metadata and property_info.metadata['Balcony Direction'] is not None and not isinstance(property_info.metadata['Balcony Direction'], float):
130
+ st.write(f"🌄 Balcony Direction: {property_info.metadata['Balcony Direction']}")
131
+ if 'Furniture' in property_info.metadata and property_info.metadata['Furniture'] is not None and not isinstance(property_info.metadata['Furniture'], float):
132
+ st.write(f"🛋️ Furniture: {property_info.metadata['Furniture']}")
133
+ if 'Toilet' in property_info.metadata and property_info.metadata['Toilet'] is not None and not isinstance(property_info.metadata['Toilet'], float):
134
+ st.write(f"🚽 Toilet: {property_info.metadata['Toilet']}")
135
+
136
+ with col4:
137
+ st.empty()
138
+
139
+ imageCarouselComponent = components.declare_component("image-carousel-component", path="frontend/public")
140
+ image_path_urls = property_info.metadata['Image URL']
141
+ if image_path_urls is not None and not isinstance(image_path_urls, float):
142
+ # Convert the string to a Python list
143
+ imageUrls = ast.literal_eval(image_path_urls)
144
+ if len(imageUrls) > 1:
145
+ selectedImageUrl = imageCarouselComponent(imageUrls=imageUrls, height=200)
146
+ if selectedImageUrl is not None:
147
+ st.image(selectedImageUrl)
148
+
149
+ # Add a divider after displaying property info
150
+ st.markdown("<hr style='border: 2px solid white'>", unsafe_allow_html=True) # Horizontal rule as a divider
151
+
152
+
153
+
154
+
155
+ def Search_Property():
156
+ global embeddings, index, result, QUESTION_PROMPT, qa
157
+
158
+ st.title("🏘️ Property Search ")
159
+ # Load data and create the search
160
+ if not session_state.database_loaded:
161
+ st.info("Loading database... This may take a moment.")
162
+ embeddings = SentenceTransformerEmbeddings(model_name="keepitreal/vietnamese-sbert")
163
+ # Create a Chroma object with persistence
164
+ db = Chroma(persist_directory="./chroma_index_1", embedding_function=embeddings)
165
+ # Get documents from the database
166
+ db.get()
167
+ llm=BardLLM()
168
+ qa = RetrievalQA.from_chain_type(
169
+ llm=llm,
170
+ chain_type="stuff",
171
+ retriever=db.as_retriever(search_type="similarity", search_kwargs={"k":4}),
172
+ return_source_documents=True)
173
+ question_template = """
174
+ Context: You are a helpful and informative bot that answers questions posed below using page_content information from real estate documents.
175
+ Do not create your own answer, just answer using page_content and metadata information from related documents in Vietnamese.
176
+ Be sure to respond in a complete sentence, being comprehensive, including all metadata information.
177
+ Imagine you're talking to a friend and use natural language and phrasing.
178
+ You can only use Vietnamese do not use other languages.
179
+
180
+ QUESTION: '{question}'
181
+
182
+ ANSWER:
183
+ """
184
+ QUESTION_PROMPT = PromptTemplate(
185
+ template=question_template, input_variables=["question"]
186
+ )
187
+ session_state.database_loaded = True
188
+
189
+ if session_state.database_loaded:
190
+ col1, col2 = st.columns([2, 1]) # Create a two-column layout
191
+
192
+ with col1:
193
+ query = st.text_input("Enter your property search query:")
194
+ search_button = st.button("Search", help="Click to start the search")
195
+
196
+ if search_button:
197
+ with st.spinner("Searching..."):
198
+ if query is not None: # Check if model_embedding is not None
199
+ qa.combine_documents_chain.llm_chain.prompt = QUESTION_PROMPT
200
+ qa.combine_documents_chain.verbose = True
201
+ qa.return_source_documents = True
202
+ results = qa({"query":query,})
203
+ result = results["source_documents"]
204
+ session_state.page_index = 0 # Reset page index when a new search is performed
205
+
206
+ with col2:
207
+ if len(result) > 0:
208
+ st.write(f'Total Results: {len(result)} properties found.') # Display "Total Results" in the second column
209
+
210
+ if result:
211
+ N = 5
212
+ prev_button, next_button = st.columns([4,1])
213
+ last_page = len(result) // N
214
+
215
+
216
+ # Update page index based on button clicks
217
+ if prev_button.button("Previous", key="prev_button"):
218
+ if session_state.page_index - 1 < 0:
219
+ session_state.page_index = last_page
220
+ else:
221
+ session_state.page_index -= 1
222
+
223
+ if next_button.button("Next", key="next_button"):
224
+ if session_state.page_index > last_page:
225
+ session_state.page_index = 0
226
+ else:
227
+ session_state.page_index += 1
228
+
229
+ # Calculate the range of results to display (5 properties at a time)
230
+ start_idx = session_state.page_index * N
231
+ end_idx = (1 + session_state.page_index) * N
232
+
233
+ # Display results for the current page
234
+ display_search_results(result, start_idx, end_idx)