Spaces:
Running
on
Zero
Running
on
Zero
amir.mahla@huggingface.co
commited on
Commit
·
d32faf0
1
Parent(s):
3fe2480
ADD new app
Browse files- README.md +4 -4
- app.py +280 -0
- assets/google.png +0 -0
- prompt.py +143 -0
- requirements.txt +8 -0
- smolvlm_inference.py +23 -0
README.md
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
---
|
2 |
title: Smol2Operator Demo
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 5.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
|
|
1 |
---
|
2 |
title: Smol2Operator Demo
|
3 |
+
emoji: 🐢
|
4 |
+
colorFrom: purple
|
5 |
+
colorTo: green
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 5.44.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
app.py
ADDED
@@ -0,0 +1,280 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from typing import Tuple, Optional
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
import numpy as np
|
6 |
+
from PIL import Image, ImageDraw, ImageFont
|
7 |
+
from smolvlm_inference import TransformersModel
|
8 |
+
|
9 |
+
from prompt import OS_SYSTEM_PROMPT
|
10 |
+
|
11 |
+
# --- Configuration ---
|
12 |
+
MODEL_ID = "smolagents/SmolVLM2-2.2B-Instruct-Agentic-GUI"
|
13 |
+
|
14 |
+
# --- Model and Processor Loading (Load once) ---
|
15 |
+
print(f"Loading model and processor for {MODEL_ID}...")
|
16 |
+
model = None
|
17 |
+
processor = None
|
18 |
+
model_loaded = False
|
19 |
+
load_error_message = ""
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
model = TransformersModel(
|
24 |
+
model_id=MODEL_ID,
|
25 |
+
to_device="cuda:0",
|
26 |
+
)
|
27 |
+
|
28 |
+
|
29 |
+
title = "Smol2Operator Demo"
|
30 |
+
|
31 |
+
description = """
|
32 |
+
This is a demo of the Smol2Operator model designed to interact with graphical user interfaces (GUIs) and perform actions within them.
|
33 |
+
This proof-of-concept (POC) version, described in [blogpost], showcases the model’s core capabilities.
|
34 |
+
This compact release is intentionally scoped to fundamental tasks, with complex workflows planned for future iterations. :hugging_face:
|
35 |
+
"""
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
SYSTEM_PROMPT: str = OS_SYSTEM_PROMPT
|
40 |
+
|
41 |
+
|
42 |
+
def get_navigation_prompt(task, image, step=1):
|
43 |
+
"""
|
44 |
+
Get the prompt for the navigation task.
|
45 |
+
- task: The task to complete
|
46 |
+
- image: The current screenshot of the web page
|
47 |
+
- step: The current step of the task
|
48 |
+
"""
|
49 |
+
system_prompt = SYSTEM_PROMPT
|
50 |
+
return [
|
51 |
+
{
|
52 |
+
"role": "system",
|
53 |
+
"content": [
|
54 |
+
{"type": "text", "text": system_prompt},
|
55 |
+
],
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"role": "user",
|
59 |
+
"content": [
|
60 |
+
{
|
61 |
+
"type": "image",
|
62 |
+
"image": image,
|
63 |
+
},
|
64 |
+
{"type": "text", "text": f"Please generate the next move according to the UI screenshot, instruction and previous actions.\n\nInstruction: {task}\n\nPrevious actions:\nNone"},
|
65 |
+
],
|
66 |
+
},
|
67 |
+
]
|
68 |
+
|
69 |
+
|
70 |
+
def array_to_image(image_array: np.ndarray) -> Image.Image:
|
71 |
+
if image_array is None:
|
72 |
+
raise ValueError("No image provided. Please upload an image before submitting.")
|
73 |
+
# Convert numpy array to PIL Image
|
74 |
+
img = Image.fromarray(np.uint8(image_array))
|
75 |
+
return img
|
76 |
+
|
77 |
+
|
78 |
+
def parse_actions_from_response(response: str) -> list[str]:
|
79 |
+
"""Parse actions from model response using regex pattern."""
|
80 |
+
pattern = r"<code>\n(.*?)\n</code>"
|
81 |
+
matches = re.findall(pattern, response, re.DOTALL)
|
82 |
+
return matches
|
83 |
+
|
84 |
+
|
85 |
+
def extract_coordinates_from_action(action_code: str) -> list[dict]:
|
86 |
+
"""Extract coordinates from action code for localization actions."""
|
87 |
+
localization_actions = []
|
88 |
+
|
89 |
+
# Patterns for different action types
|
90 |
+
patterns = {
|
91 |
+
'click': r'click\((?:x=)?([0-9.]+)(?:,\s*(?:y=)?([0-9.]+))?\)',
|
92 |
+
'double_click': r'double_click\((?:x=)?([0-9.]+)(?:,\s*(?:y=)?([0-9.]+))?\)',
|
93 |
+
'move_mouse': r'move_mouse\((?:self,\s*)?(?:x=)?([0-9.]+)(?:,\s*(?:y=)?([0-9.]+))\)',
|
94 |
+
'drag': r'drag\(\[([0-9.]+),\s*([0-9.]+)\],\s*\[([0-9.]+),\s*([0-9.]+)\]\)'
|
95 |
+
}
|
96 |
+
|
97 |
+
for action_type, pattern in patterns.items():
|
98 |
+
matches = re.finditer(pattern, action_code)
|
99 |
+
for match in matches:
|
100 |
+
if action_type == 'drag':
|
101 |
+
# Drag has from and to coordinates
|
102 |
+
from_x, from_y, to_x, to_y = match.groups()
|
103 |
+
localization_actions.append({
|
104 |
+
'type': 'drag_from',
|
105 |
+
'x': float(from_x),
|
106 |
+
'y': float(from_y),
|
107 |
+
'action': action_type
|
108 |
+
})
|
109 |
+
localization_actions.append({
|
110 |
+
'type': 'drag_to',
|
111 |
+
'x': float(to_x),
|
112 |
+
'y': float(to_y),
|
113 |
+
'action': action_type
|
114 |
+
})
|
115 |
+
else:
|
116 |
+
# Single coordinate actions
|
117 |
+
x_val = match.group(1)
|
118 |
+
y_val = match.group(2) if match.group(2) else x_val # Handle single coordinate case
|
119 |
+
if x_val and y_val:
|
120 |
+
localization_actions.append({
|
121 |
+
'type': action_type,
|
122 |
+
'x': float(x_val),
|
123 |
+
'y': float(y_val),
|
124 |
+
'action': action_type
|
125 |
+
})
|
126 |
+
|
127 |
+
return localization_actions
|
128 |
+
|
129 |
+
|
130 |
+
def create_localized_image(original_image: Image.Image, coordinates: list[dict]) -> Optional[Image.Image]:
|
131 |
+
"""Create an image with localization markers drawn on it."""
|
132 |
+
if not coordinates:
|
133 |
+
return None
|
134 |
+
|
135 |
+
# Create a copy of the original image
|
136 |
+
img_copy = original_image.copy()
|
137 |
+
draw = ImageDraw.Draw(img_copy)
|
138 |
+
|
139 |
+
# Get image dimensions
|
140 |
+
width, height = img_copy.size
|
141 |
+
|
142 |
+
# Try to load a font, fallback to default if not available
|
143 |
+
font = ImageFont.load_default()
|
144 |
+
|
145 |
+
|
146 |
+
# Color scheme for different actions
|
147 |
+
colors = {
|
148 |
+
'click': 'red',
|
149 |
+
'double_click': 'blue',
|
150 |
+
'move_mouse': 'green',
|
151 |
+
'drag_from': 'orange',
|
152 |
+
'drag_to': 'purple'
|
153 |
+
}
|
154 |
+
|
155 |
+
for i, coord in enumerate(coordinates):
|
156 |
+
# Convert normalized coordinates to pixel coordinates
|
157 |
+
pixel_x = int(coord['x'] * width)
|
158 |
+
pixel_y = int(coord['y'] * height)
|
159 |
+
|
160 |
+
# Get color for this action type
|
161 |
+
color = colors.get(coord['type'], 'red')
|
162 |
+
|
163 |
+
# Draw a circle at the coordinate
|
164 |
+
circle_radius = 8
|
165 |
+
draw.ellipse([
|
166 |
+
pixel_x - circle_radius, pixel_y - circle_radius,
|
167 |
+
pixel_x + circle_radius, pixel_y + circle_radius
|
168 |
+
], fill=color, outline='white', width=2)
|
169 |
+
|
170 |
+
# Add text label
|
171 |
+
label = f"{coord['type']}({coord['x']:.2f},{coord['y']:.2f})"
|
172 |
+
if font:
|
173 |
+
draw.text((pixel_x + 10, pixel_y - 10), label, fill=color, font=font)
|
174 |
+
else:
|
175 |
+
draw.text((pixel_x + 10, pixel_y - 10), label, fill=color)
|
176 |
+
|
177 |
+
# For drag actions, draw an arrow
|
178 |
+
if coord['type'] == 'drag_from' and i + 1 < len(coordinates) and coordinates[i + 1]['type'] == 'drag_to':
|
179 |
+
next_coord = coordinates[i + 1]
|
180 |
+
end_x = int(next_coord['x'] * width)
|
181 |
+
end_y = int(next_coord['y'] * height)
|
182 |
+
|
183 |
+
# Draw arrow line
|
184 |
+
draw.line([pixel_x, pixel_y, end_x, end_y], fill='orange', width=3)
|
185 |
+
|
186 |
+
# Draw arrowhead
|
187 |
+
arrow_size = 10
|
188 |
+
dx = end_x - pixel_x
|
189 |
+
dy = end_y - pixel_y
|
190 |
+
length = (dx**2 + dy**2)**0.5
|
191 |
+
if length > 0:
|
192 |
+
dx_norm = dx / length
|
193 |
+
dy_norm = dy / length
|
194 |
+
|
195 |
+
# Arrowhead points
|
196 |
+
arrow_x1 = end_x - arrow_size * dx_norm + arrow_size * dy_norm * 0.5
|
197 |
+
arrow_y1 = end_y - arrow_size * dy_norm - arrow_size * dx_norm * 0.5
|
198 |
+
arrow_x2 = end_x - arrow_size * dx_norm - arrow_size * dy_norm * 0.5
|
199 |
+
arrow_y2 = end_y - arrow_size * dy_norm + arrow_size * dx_norm * 0.5
|
200 |
+
|
201 |
+
draw.polygon([end_x, end_y, arrow_x1, arrow_y1, arrow_x2, arrow_y2], fill='orange')
|
202 |
+
|
203 |
+
return img_copy
|
204 |
+
|
205 |
+
|
206 |
+
# --- Gradio processing function ---
|
207 |
+
def navigate(input_numpy_image: np.ndarray, task: str) -> Tuple[str, Optional[Image.Image]]:
|
208 |
+
input_pil_image = array_to_image(input_numpy_image)
|
209 |
+
assert isinstance(input_pil_image, Image.Image)
|
210 |
+
|
211 |
+
prompt = get_navigation_prompt(task, input_pil_image)
|
212 |
+
|
213 |
+
print("Prompt:")
|
214 |
+
print(prompt)
|
215 |
+
|
216 |
+
if model is None:
|
217 |
+
raise ValueError("Model not loaded")
|
218 |
+
|
219 |
+
navigation_str = model.generate(prompt, max_new_tokens=500)
|
220 |
+
print(f"Navigation string: {navigation_str}")
|
221 |
+
navigation_str = navigation_str.strip()
|
222 |
+
|
223 |
+
# Parse actions from the response
|
224 |
+
actions = parse_actions_from_response(navigation_str)
|
225 |
+
|
226 |
+
# Extract coordinates from all actions
|
227 |
+
all_coordinates = []
|
228 |
+
for action_code in actions:
|
229 |
+
coordinates = extract_coordinates_from_action(action_code)
|
230 |
+
all_coordinates.extend(coordinates)
|
231 |
+
|
232 |
+
# Create localized image if there are coordinates
|
233 |
+
localized_image = None
|
234 |
+
if all_coordinates:
|
235 |
+
localized_image = create_localized_image(input_pil_image, all_coordinates)
|
236 |
+
print(f"Found {len(all_coordinates)} localization actions")
|
237 |
+
|
238 |
+
return navigation_str, localized_image
|
239 |
+
|
240 |
+
|
241 |
+
# --- Load Example Data ---
|
242 |
+
example_1_image: str = "./assets/google.png"
|
243 |
+
example_1_image = Image.open(example_1_image)
|
244 |
+
example_1_task = "Search for the name of the current UK Prime Minister."
|
245 |
+
|
246 |
+
example_2_image: str = "./assets/huggingface.png"
|
247 |
+
example_2_image = Image.open(example_2_image)
|
248 |
+
example_2_task = "Find the most trending model."
|
249 |
+
|
250 |
+
|
251 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
252 |
+
gr.Markdown(f"<h1 style='text-align: center;'>{title}</h1>")
|
253 |
+
# gr.Markdown(description)
|
254 |
+
|
255 |
+
with gr.Row():
|
256 |
+
with gr.Column():
|
257 |
+
input_image_component = gr.Image(label="Input UI Image", height=400)
|
258 |
+
task_component = gr.Textbox(
|
259 |
+
label="task",
|
260 |
+
placeholder="e.g., Find the latest model by H Company",
|
261 |
+
info="Type the task you want the model to complete.",
|
262 |
+
)
|
263 |
+
submit_button = gr.Button("Navigate", variant="primary")
|
264 |
+
|
265 |
+
with gr.Column():
|
266 |
+
localization_image_component = gr.Image(label="Action Localization", height=400)
|
267 |
+
output_coords_component = gr.Textbox(label="Agent Output", lines=20)
|
268 |
+
|
269 |
+
submit_button.click(navigate, [input_image_component, task_component], [output_coords_component, localization_image_component])
|
270 |
+
|
271 |
+
gr.Examples(
|
272 |
+
examples=[[example_1_image, example_1_task], [example_2_image, example_2_task]],
|
273 |
+
inputs=[input_image_component, task_component],
|
274 |
+
outputs=[output_coords_component, localization_image_component],
|
275 |
+
fn=navigate,
|
276 |
+
cache_examples=True,
|
277 |
+
)
|
278 |
+
|
279 |
+
demo.queue(api_open=False)
|
280 |
+
demo.launch(debug=True)
|
assets/google.png
ADDED
![]() |
prompt.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS_ACTIONS = """
|
2 |
+
def final_answer(answer: any) -> any:
|
3 |
+
\"\"\"
|
4 |
+
Provides a final answer to the given problem.
|
5 |
+
Args:
|
6 |
+
answer: The final answer to the problem
|
7 |
+
\"\"\"
|
8 |
+
|
9 |
+
def move_mouse(self, x: float, y: float) -> str:
|
10 |
+
\"\"\"
|
11 |
+
Moves the mouse cursor to the specified coordinates
|
12 |
+
Args:
|
13 |
+
x: The x coordinate (horizontal position)
|
14 |
+
y: The y coordinate (vertical position)
|
15 |
+
\"\"\"
|
16 |
+
|
17 |
+
def click(x: Optional[float] = None, y: Optional[float] = None) -> str:
|
18 |
+
\"\"\"
|
19 |
+
Performs a left-click at the specified normalized coordinates
|
20 |
+
Args:
|
21 |
+
x: The x coordinate (horizontal position)
|
22 |
+
y: The y coordinate (vertical position)
|
23 |
+
\"\"\"
|
24 |
+
|
25 |
+
def double_click(x: Optional[float] = None, y: Optional[float] = None) -> str:
|
26 |
+
\"\"\"
|
27 |
+
Performs a double-click at the specified normalized coordinates
|
28 |
+
Args:
|
29 |
+
x: The x coordinate (horizontal position)
|
30 |
+
y: The y coordinate (vertical position)
|
31 |
+
\"\"\"
|
32 |
+
|
33 |
+
def type(text: str) -> str:
|
34 |
+
\"\"\"
|
35 |
+
Types the specified text at the current cursor position.
|
36 |
+
Args:
|
37 |
+
text: The text to type
|
38 |
+
\"\"\"
|
39 |
+
|
40 |
+
def press(keys: str | list[str]) -> str:
|
41 |
+
\"\"\"
|
42 |
+
Presses a keyboard key
|
43 |
+
Args:
|
44 |
+
keys: The key or list of keys to press (e.g. "enter", "space", "backspace", "ctrl", etc.).
|
45 |
+
\"\"\"
|
46 |
+
|
47 |
+
def navigate_back() -> str:
|
48 |
+
\"\"\"
|
49 |
+
Goes back to the previous page in the browser. If using this tool doesn't work, just click the button directly.
|
50 |
+
\"\"\"
|
51 |
+
|
52 |
+
def drag(from_coord: list[float], to_coord: list[float]) -> str:
|
53 |
+
\"\"\"
|
54 |
+
Clicks [x1, y1], drags mouse to [x2, y2], then release click.
|
55 |
+
Args:
|
56 |
+
x1: origin x coordinate
|
57 |
+
y1: origin y coordinate
|
58 |
+
x2: end x coordinate
|
59 |
+
y2: end y coordinate
|
60 |
+
\"\"\"
|
61 |
+
|
62 |
+
def scroll(direction: Literal["up", "down"] = "down", amount: int = 1) -> str:
|
63 |
+
\"\"\"
|
64 |
+
Moves the mouse to selected coordinates, then uses the scroll button: this could scroll the page or zoom, depending on the app. DO NOT use scroll to move through linux desktop menus.
|
65 |
+
Args:
|
66 |
+
x: The x coordinate (horizontal position) of the element to scroll/zoom, defaults to None to not focus on specific coordinates
|
67 |
+
y: The y coordinate (vertical position) of the element to scroll/zoom, defaults to None to not focus on specific coordinates
|
68 |
+
direction: The direction to scroll ("up" or "down"), defaults to "down". For zoom, "up" zooms in, "down" zooms out.
|
69 |
+
amount: The amount to scroll. A good amount is 1 or 2.
|
70 |
+
\"\"\"
|
71 |
+
|
72 |
+
def wait(seconds: float) -> str:
|
73 |
+
\"\"\"
|
74 |
+
Waits for the specified number of seconds. Very useful in case the prior order is still executing (for example starting very heavy applications like browsers or office apps)
|
75 |
+
Args:
|
76 |
+
seconds: Number of seconds to wait, generally 2 is enough.
|
77 |
+
\"\"\"
|
78 |
+
"""
|
79 |
+
|
80 |
+
MOBILE_ACTIONS = """
|
81 |
+
def navigate_back() -> str:
|
82 |
+
\"\"\"
|
83 |
+
Return to home page
|
84 |
+
\"\"\"
|
85 |
+
|
86 |
+
def open_app(app_name: str) -> str:
|
87 |
+
\"\"\"
|
88 |
+
Launches the specified application.
|
89 |
+
Args:
|
90 |
+
app_name: the name of the application to launch
|
91 |
+
\"\"\"
|
92 |
+
|
93 |
+
def swipe(from_coord: list[str], to_coord: list[str]) -> str:
|
94 |
+
\"\"\"
|
95 |
+
swipe from 'from_coord' to 'to_coord'
|
96 |
+
Args:
|
97 |
+
from_coord: origin coordinates
|
98 |
+
to_coord: end coordinates
|
99 |
+
\"\"\"
|
100 |
+
|
101 |
+
def long_press(x: int, y: int) -> str:
|
102 |
+
\"\"\"
|
103 |
+
Performs a long-press at the specified coordinates
|
104 |
+
Args:
|
105 |
+
x: The x coordinate (horizontal position)
|
106 |
+
y: The y coordinate (vertical position)
|
107 |
+
\"\"\"
|
108 |
+
"""
|
109 |
+
|
110 |
+
OS_SYSTEM_PROMPT = f"""You are a helpful GUI agent. You’ll be given a task and a screenshot of the screen. Complete the task using Python function calls.
|
111 |
+
|
112 |
+
For each step:
|
113 |
+
• First, <think></think> to express the thought process guiding your next action and the reasoning behind it.
|
114 |
+
• Then, use <code></code> to perform the action. it will be executed in a stateful environment.
|
115 |
+
|
116 |
+
The following functions are exposed to the Python interpreter:
|
117 |
+
<code>
|
118 |
+
{OS_ACTIONS}
|
119 |
+
</code>
|
120 |
+
|
121 |
+
The state persists between code executions: so if in one step you've created variables or imported modules, these will all persist.
|
122 |
+
"""
|
123 |
+
|
124 |
+
MOBILE_SYSTEM_PROMPT = f"""You are a helpful GUI agent. You’ll be given a task and a screenshot of the screen. Complete the task using Python function calls.
|
125 |
+
|
126 |
+
For each step:
|
127 |
+
• First, <think></think> to express the thought process guiding your next action and the reasoning behind it.
|
128 |
+
• Then, use <code></code> to perform the action. it will be executed in a stateful environment.
|
129 |
+
|
130 |
+
The following functions are exposed to the Python interpreter:
|
131 |
+
<code>
|
132 |
+
|
133 |
+
# OS ACTIONS
|
134 |
+
|
135 |
+
{OS_ACTIONS}
|
136 |
+
|
137 |
+
# MOBILE ACTIONS
|
138 |
+
|
139 |
+
{MOBILE_ACTIONS}
|
140 |
+
</code>
|
141 |
+
|
142 |
+
The state persists between code executions: so if in one step you've created variables or imported modules, these will all persist.
|
143 |
+
"""
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy==2.3.3
|
2 |
+
Pillow==11.3.0
|
3 |
+
torch==2.8.0
|
4 |
+
torchvision==0.23.0
|
5 |
+
gradio==5.46.0
|
6 |
+
num2words==0.5.14
|
7 |
+
transformers==4.56.1
|
8 |
+
spaces==0.41.0
|
smolvlm_inference.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoModelForImageTextToText, AutoProcessor
|
3 |
+
|
4 |
+
|
5 |
+
class TransformersModel:
|
6 |
+
def __init__(self, model_id: str, to_device: str = "cuda"):
|
7 |
+
self.model_id = model_id
|
8 |
+
self.processor = AutoProcessor.from_pretrained(model_id)
|
9 |
+
self.processor.image_processor.size = {"longest_edge": 3 * 384}
|
10 |
+
self.model = AutoModelForImageTextToText.from_pretrained(model_id, torch_dtype=torch.bfloat16).to(to_device)
|
11 |
+
|
12 |
+
def generate(self, messages: list[dict], **kwargs):
|
13 |
+
inputs = self.processor.apply_chat_template(
|
14 |
+
messages,
|
15 |
+
add_generation_prompt=True,
|
16 |
+
tokenize=True,
|
17 |
+
return_dict=True,
|
18 |
+
return_tensors="pt",
|
19 |
+
).to(self.model.device, dtype=torch.bfloat16)
|
20 |
+
generated_ids = self.model.generate(**inputs, **kwargs)
|
21 |
+
return self.processor.batch_decode(
|
22 |
+
generated_ids[:, len(inputs["input_ids"][0]) :], skip_special_tokens=True
|
23 |
+
)[0]
|