Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import gradio as gr
|
4 |
+
from keras.models import load_model
|
5 |
+
|
6 |
+
names = [
|
7 |
+
'Speed limit (20km/h)',
|
8 |
+
'Speed limit (30km/h)',
|
9 |
+
'Speed limit (50km/h)',
|
10 |
+
'Speed limit (60km/h)',
|
11 |
+
'Speed limit (70km/h)',
|
12 |
+
'Speed limit (80km/h)',
|
13 |
+
'End of speed limit (80km/h)',
|
14 |
+
'Speed limit (100km/h)',
|
15 |
+
'Speed limit (120km/h)',
|
16 |
+
'No passing',
|
17 |
+
'No passing for vechiles over 3.5 metric tons',
|
18 |
+
'Road Block',
|
19 |
+
'Priority road',
|
20 |
+
'Yield',
|
21 |
+
'Stop',
|
22 |
+
'No vehicles',
|
23 |
+
'Vechiles over 3.5 metric tons prohibited',
|
24 |
+
'No entry',
|
25 |
+
'General caution',
|
26 |
+
'Double curve',
|
27 |
+
'Bumpy Road',
|
28 |
+
'Slippery road',
|
29 |
+
'Road narrows on the right',
|
30 |
+
'Road Work',
|
31 |
+
'Traffic Signals',
|
32 |
+
'Pedestrians',
|
33 |
+
'Children crossing',
|
34 |
+
'Bicycles crossing',
|
35 |
+
'Beware of ice/snow',
|
36 |
+
'Wild animals crossing',
|
37 |
+
'End of all speed and passing limits',
|
38 |
+
'Turn right ahead',
|
39 |
+
'Turn left ahead',
|
40 |
+
'Ahead only',
|
41 |
+
'Go straight or right',
|
42 |
+
'Go straight or left',
|
43 |
+
'Keep right',
|
44 |
+
'Keep left',
|
45 |
+
'Roundabout mandatory',
|
46 |
+
'End of no passing',
|
47 |
+
'End of no passing by vechiles over 3.5 metric tons'
|
48 |
+
]
|
49 |
+
|
50 |
+
# Load the saved model
|
51 |
+
model = load_model('model.h5')
|
52 |
+
|
53 |
+
|
54 |
+
# Preprocess the input image
|
55 |
+
def preprocess_image(img):
|
56 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
57 |
+
img = cv2.equalizeHist(img)
|
58 |
+
img = img / 255
|
59 |
+
img = cv2.resize(img, (32, 32))
|
60 |
+
img = img.reshape(1, 32, 32, 1)
|
61 |
+
return img
|
62 |
+
|
63 |
+
|
64 |
+
# Define the prediction function
|
65 |
+
def predict_image(image):
|
66 |
+
preprocessed_image = preprocess_image(image)
|
67 |
+
predictions = model.predict(preprocessed_image)
|
68 |
+
class_index = np.argmax(predictions)
|
69 |
+
class_label = names[class_index]
|
70 |
+
accuracy = predictions[0][class_index]
|
71 |
+
return f"Prediction: {class_label}, Accuracy: {accuracy:.2%}"
|
72 |
+
|
73 |
+
|
74 |
+
# Create the Gradio interface
|
75 |
+
iface = gr.Interface(fn=predict_image, inputs="image", outputs="text")
|
76 |
+
|
77 |
+
# Run the interface
|
78 |
+
iface.launch()
|