A-Celsius commited on
Commit
6d66c72
·
1 Parent(s): 259672b

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +78 -0
app.py ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+ import gradio as gr
4
+ from keras.models import load_model
5
+
6
+ names = [
7
+ 'Speed limit (20km/h)',
8
+ 'Speed limit (30km/h)',
9
+ 'Speed limit (50km/h)',
10
+ 'Speed limit (60km/h)',
11
+ 'Speed limit (70km/h)',
12
+ 'Speed limit (80km/h)',
13
+ 'End of speed limit (80km/h)',
14
+ 'Speed limit (100km/h)',
15
+ 'Speed limit (120km/h)',
16
+ 'No passing',
17
+ 'No passing for vechiles over 3.5 metric tons',
18
+ 'Road Block',
19
+ 'Priority road',
20
+ 'Yield',
21
+ 'Stop',
22
+ 'No vehicles',
23
+ 'Vechiles over 3.5 metric tons prohibited',
24
+ 'No entry',
25
+ 'General caution',
26
+ 'Double curve',
27
+ 'Bumpy Road',
28
+ 'Slippery road',
29
+ 'Road narrows on the right',
30
+ 'Road Work',
31
+ 'Traffic Signals',
32
+ 'Pedestrians',
33
+ 'Children crossing',
34
+ 'Bicycles crossing',
35
+ 'Beware of ice/snow',
36
+ 'Wild animals crossing',
37
+ 'End of all speed and passing limits',
38
+ 'Turn right ahead',
39
+ 'Turn left ahead',
40
+ 'Ahead only',
41
+ 'Go straight or right',
42
+ 'Go straight or left',
43
+ 'Keep right',
44
+ 'Keep left',
45
+ 'Roundabout mandatory',
46
+ 'End of no passing',
47
+ 'End of no passing by vechiles over 3.5 metric tons'
48
+ ]
49
+
50
+ # Load the saved model
51
+ model = load_model('model.h5')
52
+
53
+
54
+ # Preprocess the input image
55
+ def preprocess_image(img):
56
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
57
+ img = cv2.equalizeHist(img)
58
+ img = img / 255
59
+ img = cv2.resize(img, (32, 32))
60
+ img = img.reshape(1, 32, 32, 1)
61
+ return img
62
+
63
+
64
+ # Define the prediction function
65
+ def predict_image(image):
66
+ preprocessed_image = preprocess_image(image)
67
+ predictions = model.predict(preprocessed_image)
68
+ class_index = np.argmax(predictions)
69
+ class_label = names[class_index]
70
+ accuracy = predictions[0][class_index]
71
+ return f"Prediction: {class_label}, Accuracy: {accuracy:.2%}"
72
+
73
+
74
+ # Create the Gradio interface
75
+ iface = gr.Interface(fn=predict_image, inputs="image", outputs="text")
76
+
77
+ # Run the interface
78
+ iface.launch()