|
import argparse |
|
import os |
|
import platform |
|
import sys |
|
from pathlib import Path |
|
|
|
import torch |
|
|
|
FILE = Path(__file__).resolve() |
|
ROOT = FILE.parents[0] |
|
if str(ROOT) not in sys.path: |
|
sys.path.append(str(ROOT)) |
|
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) |
|
|
|
from models.common import DetectMultiBackend |
|
from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams |
|
from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2, |
|
increment_path, non_max_suppression, print_args, scale_boxes, strip_optimizer, xyxy2xywh) |
|
from utils.plots import Annotator, colors, save_one_box |
|
from utils.torch_utils import select_device, smart_inference_mode |
|
|
|
|
|
@smart_inference_mode() |
|
def run( |
|
weights=ROOT / 'yolo.pt', |
|
source=ROOT / 'data/images', |
|
data=ROOT / 'data/coco.yaml', |
|
conf_thres=0.25, |
|
iou_thres=0.45, |
|
max_det=1000, |
|
device='', |
|
view_img=False, |
|
save_txt=False, |
|
save_conf=False, |
|
save_crop=False, |
|
nosave=False, |
|
classes=None, |
|
agnostic_nms=False, |
|
augment=False, |
|
visualize=False, |
|
update=False, |
|
project=ROOT / 'runs/detect', |
|
name='exp', |
|
exist_ok=False, |
|
line_thickness=3, |
|
hide_labels=False, |
|
hide_conf=False, |
|
half=False, |
|
dnn=False, |
|
vid_stride=1, |
|
): |
|
|
|
|
|
device = select_device(device) |
|
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half) |
|
stride, names, pt = model.stride, model.names, model.pt |
|
imgsz=(640, 640) |
|
imgsz = check_img_size(imgsz, s=stride) |
|
|
|
|
|
bs = 1 |
|
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride) |
|
|
|
|
|
model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) |
|
dt = (Profile(), Profile(), Profile()) |
|
for path, im, im0s, vid_cap, s in dataset: |
|
|
|
with dt[0]: |
|
im = torch.from_numpy(im).to(model.device) |
|
im = im.half() if model.fp16 else im.float() |
|
im /= 255 |
|
if len(im.shape) == 3: |
|
im = im[None] |
|
|
|
|
|
with dt[1]: |
|
pred = model(im, augment=augment, visualize=visualize) |
|
|
|
|
|
with dt[2]: |
|
pred = pred[0][1] if isinstance(pred[0], list) else pred[0] |
|
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det) |
|
|
|
p = Path(path) |
|
save_path = str(save_dir / p.name) |
|
|
|
for i, det in enumerate(pred): |
|
|
|
im0 = im0s.copy() |
|
annotator = Annotator(im0, line_width=line_thickness, example=str(names)) |
|
|
|
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round() |
|
|
|
for *xyxy, conf, cls in reversed(det): |
|
|
|
c = int(cls) |
|
label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}') |
|
annotator.box_label(xyxy, label, color=colors(c, True)) |
|
|
|
cv2.imwrite(save_path, im0) |
|
|
|
|
|
|
|
def parse_opt(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolo.pt', help='model path or triton URL') |
|
parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob/screen/0(webcam)') |
|
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path') |
|
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w') |
|
parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold') |
|
parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold') |
|
parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image') |
|
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') |
|
parser.add_argument('--view-img', action='store_true', help='show results') |
|
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') |
|
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') |
|
parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes') |
|
parser.add_argument('--nosave', action='store_true', help='do not save images/videos') |
|
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3') |
|
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS') |
|
parser.add_argument('--augment', action='store_true', help='augmented inference') |
|
parser.add_argument('--visualize', action='store_true', help='visualize features') |
|
parser.add_argument('--update', action='store_true', help='update all models') |
|
parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name') |
|
parser.add_argument('--name', default='exp', help='save results to project/name') |
|
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') |
|
parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)') |
|
parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels') |
|
parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences') |
|
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference') |
|
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference') |
|
parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride') |
|
opt = parser.parse_args() |
|
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 |
|
print_args(vars(opt)) |
|
return opt |
|
|
|
|
|
def main(opt): |
|
check_requirements(exclude=('tensorboard', 'thop')) |
|
run(**vars(opt)) |
|
|
|
|
|
if __name__ == "__main__": |
|
opt = parse_opt() |
|
main(opt) |