hyghds98f6g7 / inference.py
69agreeable's picture
Upload 12 files
5ccac3e verified
import gc
import os
import random
import numpy as np
from scipy.signal.windows import hann
import soundfile as sf
import torch
from cog import BasePredictor, Input, Path
import tempfile
import argparse
import librosa
from audiosr import build_model, super_resolution
from scipy import signal
import pyloudnorm as pyln
import warnings
warnings.filterwarnings("ignore")
os.environ["TOKENIZERS_PARALLELISM"] = "true"
torch.set_float32_matmul_precision("high")
def match_array_shapes(array_1:np.ndarray, array_2:np.ndarray):
if (len(array_1.shape) == 1) & (len(array_2.shape) == 1):
if array_1.shape[0] > array_2.shape[0]:
array_1 = array_1[:array_2.shape[0]]
elif array_1.shape[0] < array_2.shape[0]:
array_1 = np.pad(array_1, ((array_2.shape[0] - array_1.shape[0], 0)), 'constant', constant_values=0)
else:
if array_1.shape[1] > array_2.shape[1]:
array_1 = array_1[:,:array_2.shape[1]]
elif array_1.shape[1] < array_2.shape[1]:
padding = array_2.shape[1] - array_1.shape[1]
array_1 = np.pad(array_1, ((0,0), (0,padding)), 'constant', constant_values=0)
return array_1
def lr_filter(audio, cutoff, filter_type, order=12, sr=48000):
audio = audio.T
nyquist = 0.5 * sr
normal_cutoff = cutoff / nyquist
b, a = signal.butter(order//2, normal_cutoff, btype=filter_type, analog=False)
sos = signal.tf2sos(b, a)
filtered_audio = signal.sosfiltfilt(sos, audio)
return filtered_audio.T
class Predictor(BasePredictor):
def setup(self, model_name="basic", device="auto"):
self.model_name = model_name
self.device = device
self.sr = 48000
print("Loading Model...")
self.audiosr = build_model(model_name=self.model_name, device=self.device)
# print(self.audiosr)
# exit()
print("Model loaded!")
def process_audio(self, input_file, chunk_size=5.12, overlap=0.1, seed=None, guidance_scale=3.5, ddim_steps=50):
audio, sr = librosa.load(input_file, sr=input_cutoff * 2, mono=False)
audio = audio.T
sr = input_cutoff * 2
print(f"audio.shape = {audio.shape}")
print(f"input cutoff = {input_cutoff}")
is_stereo = len(audio.shape) == 2
audio_channels = [audio] if not is_stereo else [audio[:, 0], audio[:, 1]]
print("audio is stereo" if is_stereo else "Audio is mono")
chunk_samples = int(chunk_size * sr)
overlap_samples = int(overlap * chunk_samples)
output_chunk_samples = int(chunk_size * self.sr)
output_overlap_samples = int(overlap * output_chunk_samples)
enable_overlap = overlap > 0
print(f"enable_overlap = {enable_overlap}")
def process_chunks(audio):
chunks = []
original_lengths = []
start = 0
while start < len(audio):
end = min(start + chunk_samples, len(audio))
chunk = audio[start:end]
if len(chunk) < chunk_samples:
original_lengths.append(len(chunk))
chunk = np.concatenate([chunk, np.zeros(chunk_samples - len(chunk))])
else:
original_lengths.append(chunk_samples)
chunks.append(chunk)
start += chunk_samples - overlap_samples if enable_overlap else chunk_samples
return chunks, original_lengths
# Process both channels (mono or stereo)
chunks_per_channel = [process_chunks(channel) for channel in audio_channels]
sample_rate_ratio = self.sr / sr
total_length = len(chunks_per_channel[0][0]) * output_chunk_samples - (len(chunks_per_channel[0][0]) - 1) * (output_overlap_samples if enable_overlap else 0)
reconstructed_channels = [np.zeros((1, total_length)) for _ in audio_channels]
meter_before = pyln.Meter(sr)
meter_after = pyln.Meter(self.sr)
# Process chunks for each channel
for ch_idx, (chunks, original_lengths) in enumerate(chunks_per_channel):
for i, chunk in enumerate(chunks):
loudness_before = meter_before.integrated_loudness(chunk)
print(f"Processing chunk {i+1} of {len(chunks)} for {'Left/Mono' if ch_idx == 0 else 'Right'} channel")
with tempfile.NamedTemporaryFile(suffix=".wav", delete=True) as temp_wav:
sf.write(temp_wav.name, chunk, sr)
out_chunk = super_resolution(
self.audiosr,
temp_wav.name,
seed=seed,
guidance_scale=guidance_scale,
ddim_steps=ddim_steps,
latent_t_per_second=12.8
)
out_chunk = out_chunk[0]
num_samples_to_keep = int(original_lengths[i] * sample_rate_ratio)
out_chunk = out_chunk[:, :num_samples_to_keep].squeeze()
loudness_after = meter_after.integrated_loudness(out_chunk)
out_chunk = pyln.normalize.loudness(out_chunk, loudness_after, loudness_before)
if enable_overlap:
actual_overlap_samples = min(output_overlap_samples, num_samples_to_keep)
fade_out = np.linspace(1., 0., actual_overlap_samples)
fade_in = np.linspace(0., 1., actual_overlap_samples)
if i == 0:
out_chunk[-actual_overlap_samples:] *= fade_out
elif i < len(chunks) - 1:
out_chunk[:actual_overlap_samples] *= fade_in
out_chunk[-actual_overlap_samples:] *= fade_out
else:
out_chunk[:actual_overlap_samples] *= fade_in
start = i * (output_chunk_samples - output_overlap_samples if enable_overlap else output_chunk_samples)
end = start + out_chunk.shape[0]
reconstructed_channels[ch_idx][0, start:end] += out_chunk.flatten()
reconstructed_audio = np.stack(reconstructed_channels, axis=-1) if is_stereo else reconstructed_channels[0]
if multiband_ensemble:
low, _ = librosa.load(input_file, sr=48000, mono=False)
output = match_array_shapes(reconstructed_audio[0].T, low)
low = lr_filter(low.T, crossover_freq, 'lowpass', order=10)
high = lr_filter(output.T, crossover_freq, 'highpass', order=10)
high = lr_filter(high, 23000, 'lowpass', order=2)
output = low + high
else:
output = reconstructed_audio[0]
# print(output, type(output))
return output
def predict(self,
input_file: Path = Input(description="Audio to upsample"),
ddim_steps: int = Input(description="Number of inference steps", default=50, ge=10, le=500),
guidance_scale: float = Input(description="Scale for classifier free guidance", default=3.5, ge=1.0, le=20.0),
overlap: float = Input(description="overlap size", default=0.04),
chunk_size: float = Input(description="chunksize", default=10.24),
seed: int = Input(description="Random seed. Leave blank to randomize the seed", default=None)
) -> Path:
if seed == 0:
seed = random.randint(0, 2**32 - 1)
print(f"Setting seed to: {seed}")
print(f"overlap = {overlap}")
print(f"guidance_scale = {guidance_scale}")
print(f"ddim_steps = {ddim_steps}")
print(f"chunk_size = {chunk_size}")
print(f"multiband_ensemble = {multiband_ensemble}")
print(f"input file = {os.path.basename(input_file)}")
os.makedirs(output_folder, exist_ok=True)
waveform = self.process_audio(
input_file,
chunk_size=chunk_size,
overlap=overlap,
seed=seed,
guidance_scale=guidance_scale,
ddim_steps=ddim_steps
)
filename = os.path.splitext(os.path.basename(input_file))[0]
sf.write(f"{output_folder}/SR_{filename}.wav", data=waveform, samplerate=48000, subtype="PCM_16")
print(f"file created: {output_folder}/SR_{filename}.wav")
del self.audiosr, waveform
gc.collect()
torch.cuda.empty_cache()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Find volume difference of two audio files.")
parser.add_argument("--input", help="Path to input audio file")
parser.add_argument("--output", help="Output folder")
parser.add_argument("--ddim_steps", help="Number of ddim steps", type=int, required=False, default=50)
parser.add_argument("--chunk_size", help="chunk size", type=float, required=False, default=10.24)
parser.add_argument("--guidance_scale", help="Guidance scale value", type=float, required=False, default=3.5)
parser.add_argument("--seed", help="Seed value, 0 = random seed", type=int, required=False, default=0)
parser.add_argument("--overlap", help="overlap value", type=float, required=False, default=0.04)
parser.add_argument("--multiband_ensemble", type=bool, help="Use multiband ensemble with input")
parser.add_argument("--input_cutoff", help="Define the crossover of audio input in the multiband ensemble", type=int, required=False, default=12000)
args = parser.parse_args()
input_file_path = args.input
output_folder = args.output
ddim_steps = args.ddim_steps
chunk_size = args.chunk_size
guidance_scale = args.guidance_scale
seed = args.seed
overlap = args.overlap
input_cutoff = args.input_cutoff
multiband_ensemble = args.multiband_ensemble
crossover_freq = input_cutoff - 1000
p = Predictor()
p.setup(device='auto')
out = p.predict(
input_file_path,
ddim_steps=ddim_steps,
guidance_scale=guidance_scale,
seed=seed,
chunk_size=chunk_size,
overlap=overlap
)
del p
gc.collect()
torch.cuda.empty_cache()