Spaces:
Sleeping
Sleeping
import torch | |
from transformers import pipeline, VitsModel, VitsTokenizer | |
import numpy as np | |
import gradio as gr | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
# Load Whisper-small | |
pipe = pipeline("automatic-speech-recognition", | |
model="openai/whisper-small", | |
device=device | |
) | |
# Load the model checkpoint and tokenizer | |
#model = VitsModel.from_pretrained("Matthijs/mms-tts-fra") | |
#tokenizer = VitsTokenizer.from_pretrained("Matthijs/mms-tts-fra") | |
model = VitsModel.from_pretrained("facebook/mms-tts-fra") | |
tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-fra") | |
# Define a function to translate an audio, in French here | |
def translate(audio): | |
outputs = pipe(audio, max_new_tokens=256, | |
generate_kwargs={"task": "transcribe", "language": "fr"}) | |
return outputs["text"] | |
# Define function to generate the waveform output | |
def synthesise(text): | |
inputs = tokenizer(text, return_tensors="pt") | |
input_ids = inputs["input_ids"] | |
with torch.no_grad(): | |
outputs = model(input_ids) | |
return outputs.audio[0] | |
# Define the pipeline | |
def speech_to_speech_translation(audio): | |
translated_text = translate(audio) | |
synthesised_speech = synthesise(translated_text) | |
synthesised_speech = ( | |
synthesised_speech.numpy() * 32767).astype(np.int16) | |
return 16000, synthesised_speech | |
# Define the title etc | |
title = "Cascaded STST" | |
description = """ | |
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in French. Demo uses OpenAI's [Whisper Small](https://huggingface.co/openai/whisper-small) model for speech translation, and Facebook's | |
[MMS TTS](https://huggingface.co/facebook/mms-tts) model, finetuned by [Matthijs](https://huggingface.co/Matthijs), for text-to-speech: | |
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation") | |
""" | |
demo = gr.Blocks() | |
mic_translate = gr.Interface( | |
fn=speech_to_speech_translation, | |
inputs=gr.Audio(source="microphone", type="filepath"), | |
outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
title=title, | |
description=description, | |
) | |
file_translate = gr.Interface( | |
fn=speech_to_speech_translation, | |
inputs=gr.Audio(source="upload", type="filepath"), | |
outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
examples=[["./example.wav"]], | |
title=title, | |
description=description, | |
) | |
with demo: | |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) | |
demo.launch() |