Spaces:
Sleeping
Sleeping
0.26 loading models on start
Browse files
app.py
CHANGED
@@ -24,11 +24,33 @@ models_available = [
|
|
24 |
"mistralai/Mistral-7B-Instruct-v0.3",
|
25 |
]
|
26 |
|
27 |
-
|
|
|
|
|
|
|
|
|
28 |
device = "cuda"
|
29 |
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
def apply_chat_template(messages, add_generation_prompt=False):
|
34 |
"""
|
@@ -54,39 +76,6 @@ def apply_chat_template(messages, add_generation_prompt=False):
|
|
54 |
|
55 |
return pharia_template
|
56 |
|
57 |
-
@spaces.GPU()
|
58 |
-
def load_model_a(model_id):
|
59 |
-
global tokenizer_a, model_a, model_id_a
|
60 |
-
try:
|
61 |
-
model_id_a = model_id # need to access model_id with tokenizer
|
62 |
-
tokenizer_a = AutoTokenizer.from_pretrained(model_id)
|
63 |
-
model_a = AutoModelForCausalLM.from_pretrained(
|
64 |
-
model_id,
|
65 |
-
torch_dtype=torch.float16,
|
66 |
-
device_map="auto",
|
67 |
-
trust_remote_code=True,
|
68 |
-
)
|
69 |
-
model_a.tie_weights()
|
70 |
-
except Exception as e:
|
71 |
-
logging.error(f'{SPACER} Error: {e}, Traceback {traceback.format_exc()}')
|
72 |
-
return gr.update(label=model_id)
|
73 |
-
|
74 |
-
@spaces.GPU()
|
75 |
-
def load_model_b(model_id):
|
76 |
-
global tokenizer_b, model_b, model_id_b
|
77 |
-
try:
|
78 |
-
model_id_b = model_id
|
79 |
-
tokenizer_b = AutoTokenizer.from_pretrained(model_id)
|
80 |
-
model_b = AutoModelForCausalLM.from_pretrained(
|
81 |
-
model_id,
|
82 |
-
torch_dtype=torch.float16,
|
83 |
-
device_map="auto",
|
84 |
-
trust_remote_code=True,
|
85 |
-
)
|
86 |
-
model_b.tie_weights()
|
87 |
-
except Exception as e:
|
88 |
-
logging.error(f'{SPACER} Error: {e}, Traceback {traceback.format_exc()}')
|
89 |
-
return gr.update(label=model_id)
|
90 |
|
91 |
@spaces.GPU()
|
92 |
def generate_both(system_prompt, input_text, chatbot_a, chatbot_b, max_new_tokens=2048, temperature=0.2, top_p=0.9, repetition_penalty=1.1):
|
@@ -208,10 +197,8 @@ with gr.Blocks() as demo:
|
|
208 |
system_prompt = gr.Textbox(lines=1, label="System Prompt", value="You are a helpful chatbot. Write a Nike style ad headline about the shame of being second best", show_copy_button=True)
|
209 |
with gr.Row(variant="panel"):
|
210 |
with gr.Column():
|
211 |
-
model_dropdown_a = gr.Dropdown(label="Model A", choices=models_available, value=None)
|
212 |
chatbot_a = gr.Chatbot(label="Model A", rtl=True, likeable=True, show_copy_button=True, height=500)
|
213 |
with gr.Column():
|
214 |
-
model_dropdown_b = gr.Dropdown(label="Model B", choices=models_available, value=None)
|
215 |
chatbot_b = gr.Chatbot(label="Model B", rtl=True, likeable=True, show_copy_button=True, height=500)
|
216 |
with gr.Row(variant="panel"):
|
217 |
with gr.Column(scale=1):
|
@@ -224,9 +211,6 @@ with gr.Blocks() as demo:
|
|
224 |
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=1.0, label="Top-p", step=0.01)
|
225 |
repetition_penalty = gr.Slider(minimum=0.1, maximum=2.0, value=1.1, label="Repetition Penalty", step=0.1)
|
226 |
|
227 |
-
model_dropdown_a.change(load_model_a, inputs=[model_dropdown_a], outputs=[chatbot_a])
|
228 |
-
model_dropdown_b.change(load_model_b, inputs=[model_dropdown_b], outputs=[chatbot_b])
|
229 |
-
|
230 |
input_text.submit(generate_both, inputs=[system_prompt, input_text, chatbot_a, chatbot_b, max_new_tokens, temperature, top_p, repetition_penalty], outputs=[chatbot_a, chatbot_b])
|
231 |
submit_btn.click(generate_both, inputs=[system_prompt, input_text, chatbot_a, chatbot_b, max_new_tokens, temperature, top_p, repetition_penalty], outputs=[chatbot_a, chatbot_b])
|
232 |
clear_btn.click(clear, outputs=[chatbot_a, chatbot_b])
|
|
|
24 |
"mistralai/Mistral-7B-Instruct-v0.3",
|
25 |
]
|
26 |
|
27 |
+
model_a_info = {"id": "NousResearch/Meta-Llama-3.1-8B-Instruct",
|
28 |
+
"name": "Meta Llama 3.1 8B Instruct"}
|
29 |
+
model_b_info = {"id": "mistralai/Mistral-7B-Instruct-v0.3",
|
30 |
+
"name": "Mistral 7B Instruct v0.3"}
|
31 |
+
|
32 |
device = "cuda"
|
33 |
|
34 |
+
try:
|
35 |
+
tokenizer_a = AutoTokenizer.from_pretrained(model_a_info['id'])
|
36 |
+
model_a = AutoModelForCausalLM.from_pretrained(
|
37 |
+
model_a_info['id'],
|
38 |
+
torch_dtype=torch.float16,
|
39 |
+
device_map="auto",
|
40 |
+
trust_remote_code=True,
|
41 |
+
)
|
42 |
+
#model_a.tie_weights()
|
43 |
+
tokenizer_b = AutoTokenizer.from_pretrained(model_b_info['id'])
|
44 |
+
model_b = AutoModelForCausalLM.from_pretrained(
|
45 |
+
model_b_info['id'],
|
46 |
+
torch_dtype=torch.float16,
|
47 |
+
device_map="auto",
|
48 |
+
trust_remote_code=True,
|
49 |
+
)
|
50 |
+
model_b.tie_weights()
|
51 |
+
except Exception as e:
|
52 |
+
logging.error(f'{SPACER} Error: {e}, Traceback {traceback.format_exc()}')
|
53 |
+
|
54 |
|
55 |
def apply_chat_template(messages, add_generation_prompt=False):
|
56 |
"""
|
|
|
76 |
|
77 |
return pharia_template
|
78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
@spaces.GPU()
|
81 |
def generate_both(system_prompt, input_text, chatbot_a, chatbot_b, max_new_tokens=2048, temperature=0.2, top_p=0.9, repetition_penalty=1.1):
|
|
|
197 |
system_prompt = gr.Textbox(lines=1, label="System Prompt", value="You are a helpful chatbot. Write a Nike style ad headline about the shame of being second best", show_copy_button=True)
|
198 |
with gr.Row(variant="panel"):
|
199 |
with gr.Column():
|
|
|
200 |
chatbot_a = gr.Chatbot(label="Model A", rtl=True, likeable=True, show_copy_button=True, height=500)
|
201 |
with gr.Column():
|
|
|
202 |
chatbot_b = gr.Chatbot(label="Model B", rtl=True, likeable=True, show_copy_button=True, height=500)
|
203 |
with gr.Row(variant="panel"):
|
204 |
with gr.Column(scale=1):
|
|
|
211 |
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=1.0, label="Top-p", step=0.01)
|
212 |
repetition_penalty = gr.Slider(minimum=0.1, maximum=2.0, value=1.1, label="Repetition Penalty", step=0.1)
|
213 |
|
|
|
|
|
|
|
214 |
input_text.submit(generate_both, inputs=[system_prompt, input_text, chatbot_a, chatbot_b, max_new_tokens, temperature, top_p, repetition_penalty], outputs=[chatbot_a, chatbot_b])
|
215 |
submit_btn.click(generate_both, inputs=[system_prompt, input_text, chatbot_a, chatbot_b, max_new_tokens, temperature, top_p, repetition_penalty], outputs=[chatbot_a, chatbot_b])
|
216 |
clear_btn.click(clear, outputs=[chatbot_a, chatbot_b])
|