Spaces:
Sleeping
Sleeping
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
import gradio as gr | |
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-large") | |
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-large") | |
# Initialize chat history | |
chat_history_ids = None | |
def chat_cpu(user_input): | |
global chat_history_ids | |
# Encode the new user input, add the eos_token, and return a tensor in PyTorch | |
new_user_input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors='pt') | |
# Append the new user input tokens to the chat history | |
bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if chat_history_ids is not None else new_user_input_ids | |
# Generate a response while limiting the total chat history to 1000 tokens | |
chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id) | |
# Pretty print last output tokens from bot | |
response = tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True) | |
return "DialoGPT: {}".format(response) | |
iface = gr.Interface(fn=chat_cpu, inputs="text", outputs="text") | |
iface.launch(share=True) | |