Spaces:
Running
Running
Upload model/SUNet_detail.py
Browse files- model/SUNet_detail.py +788 -0
model/SUNet_detail.py
ADDED
@@ -0,0 +1,788 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.utils.checkpoint as checkpoint
|
4 |
+
from einops import rearrange
|
5 |
+
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
6 |
+
from thop import profile
|
7 |
+
|
8 |
+
class Mlp(nn.Module):
|
9 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
10 |
+
super().__init__()
|
11 |
+
out_features = out_features or in_features
|
12 |
+
hidden_features = hidden_features or in_features
|
13 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
14 |
+
self.act = act_layer()
|
15 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
16 |
+
self.drop = nn.Dropout(drop)
|
17 |
+
|
18 |
+
def forward(self, x):
|
19 |
+
x = self.fc1(x)
|
20 |
+
x = self.act(x)
|
21 |
+
x = self.drop(x)
|
22 |
+
x = self.fc2(x)
|
23 |
+
x = self.drop(x)
|
24 |
+
return x
|
25 |
+
|
26 |
+
|
27 |
+
def window_partition(x, window_size):
|
28 |
+
"""
|
29 |
+
Args:
|
30 |
+
x: (B, H, W, C)
|
31 |
+
window_size (int): window size
|
32 |
+
|
33 |
+
Returns:
|
34 |
+
windows: (num_windows*B, window_size, window_size, C)
|
35 |
+
"""
|
36 |
+
B, H, W, C = x.shape
|
37 |
+
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
38 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
39 |
+
return windows
|
40 |
+
|
41 |
+
|
42 |
+
def window_reverse(windows, window_size, H, W):
|
43 |
+
"""
|
44 |
+
Args:
|
45 |
+
windows: (num_windows*B, window_size, window_size, C)
|
46 |
+
window_size (int): Window size
|
47 |
+
H (int): Height of image
|
48 |
+
W (int): Width of image
|
49 |
+
|
50 |
+
Returns:
|
51 |
+
x: (B, H, W, C)
|
52 |
+
"""
|
53 |
+
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
54 |
+
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
|
55 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
56 |
+
return x
|
57 |
+
|
58 |
+
|
59 |
+
class WindowAttention(nn.Module):
|
60 |
+
r""" Window based multi-head self attention (W-MSA) module with relative position bias.
|
61 |
+
It supports both of shifted and non-shifted window.
|
62 |
+
|
63 |
+
Args:
|
64 |
+
dim (int): Number of input channels.
|
65 |
+
window_size (tuple[int]): The height and width of the window.
|
66 |
+
num_heads (int): Number of attention heads.
|
67 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
68 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
|
69 |
+
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
70 |
+
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
71 |
+
"""
|
72 |
+
|
73 |
+
def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
|
74 |
+
|
75 |
+
super().__init__()
|
76 |
+
self.dim = dim
|
77 |
+
self.window_size = window_size # Wh, Ww
|
78 |
+
self.num_heads = num_heads
|
79 |
+
head_dim = dim // num_heads
|
80 |
+
self.scale = qk_scale or head_dim ** -0.5
|
81 |
+
|
82 |
+
# define a parameter table of relative position bias
|
83 |
+
self.relative_position_bias_table = nn.Parameter(
|
84 |
+
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
85 |
+
|
86 |
+
# get pair-wise relative position index for each token inside the window
|
87 |
+
coords_h = torch.arange(self.window_size[0])
|
88 |
+
coords_w = torch.arange(self.window_size[1])
|
89 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
90 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
91 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
92 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
93 |
+
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
94 |
+
relative_coords[:, :, 1] += self.window_size[1] - 1
|
95 |
+
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
96 |
+
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
97 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
98 |
+
|
99 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
100 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
101 |
+
self.proj = nn.Linear(dim, dim)
|
102 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
103 |
+
|
104 |
+
trunc_normal_(self.relative_position_bias_table, std=.02)
|
105 |
+
self.softmax = nn.Softmax(dim=-1)
|
106 |
+
|
107 |
+
def forward(self, x, mask=None):
|
108 |
+
"""
|
109 |
+
Args:
|
110 |
+
x: input features with shape of (num_windows*B, N, C)
|
111 |
+
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
|
112 |
+
"""
|
113 |
+
B_, N, C = x.shape
|
114 |
+
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
115 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
116 |
+
|
117 |
+
q = q * self.scale
|
118 |
+
attn = (q @ k.transpose(-2, -1))
|
119 |
+
|
120 |
+
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
121 |
+
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
|
122 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
123 |
+
attn = attn + relative_position_bias.unsqueeze(0)
|
124 |
+
|
125 |
+
if mask is not None:
|
126 |
+
nW = mask.shape[0]
|
127 |
+
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
|
128 |
+
attn = attn.view(-1, self.num_heads, N, N)
|
129 |
+
attn = self.softmax(attn)
|
130 |
+
else:
|
131 |
+
attn = self.softmax(attn)
|
132 |
+
|
133 |
+
attn = self.attn_drop(attn)
|
134 |
+
|
135 |
+
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
136 |
+
x = self.proj(x)
|
137 |
+
x = self.proj_drop(x)
|
138 |
+
return x
|
139 |
+
|
140 |
+
def extra_repr(self) -> str:
|
141 |
+
return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}'
|
142 |
+
|
143 |
+
def flops(self, N):
|
144 |
+
# calculate flops for 1 window with token length of N
|
145 |
+
flops = 0
|
146 |
+
# qkv = self.qkv(x)
|
147 |
+
flops += N * self.dim * 3 * self.dim
|
148 |
+
# attn = (q @ k.transpose(-2, -1))
|
149 |
+
flops += self.num_heads * N * (self.dim // self.num_heads) * N
|
150 |
+
# x = (attn @ v)
|
151 |
+
flops += self.num_heads * N * N * (self.dim // self.num_heads)
|
152 |
+
# x = self.proj(x)
|
153 |
+
flops += N * self.dim * self.dim
|
154 |
+
return flops
|
155 |
+
|
156 |
+
|
157 |
+
class SwinTransformerBlock(nn.Module):
|
158 |
+
r""" Swin Transformer Block.
|
159 |
+
|
160 |
+
Args:
|
161 |
+
dim (int): Number of input channels.
|
162 |
+
input_resolution (tuple[int]): Input resulotion.
|
163 |
+
num_heads (int): Number of attention heads.
|
164 |
+
window_size (int): Window size.
|
165 |
+
shift_size (int): Shift size for SW-MSA.
|
166 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
167 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
168 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
169 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
170 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
171 |
+
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
172 |
+
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
173 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
174 |
+
"""
|
175 |
+
|
176 |
+
def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0,
|
177 |
+
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
|
178 |
+
act_layer=nn.GELU, norm_layer=nn.LayerNorm):
|
179 |
+
super().__init__()
|
180 |
+
self.dim = dim
|
181 |
+
self.input_resolution = input_resolution
|
182 |
+
self.num_heads = num_heads
|
183 |
+
self.window_size = window_size
|
184 |
+
self.shift_size = shift_size
|
185 |
+
self.mlp_ratio = mlp_ratio
|
186 |
+
if min(self.input_resolution) <= self.window_size:
|
187 |
+
# if window size is larger than input resolution, we don't partition windows
|
188 |
+
self.shift_size = 0
|
189 |
+
self.window_size = min(self.input_resolution)
|
190 |
+
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
|
191 |
+
|
192 |
+
self.norm1 = norm_layer(dim)
|
193 |
+
self.attn = WindowAttention(
|
194 |
+
dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
|
195 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
|
196 |
+
|
197 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
198 |
+
self.norm2 = norm_layer(dim)
|
199 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
200 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
201 |
+
|
202 |
+
if self.shift_size > 0:
|
203 |
+
# calculate attention mask for SW-MSA
|
204 |
+
H, W = self.input_resolution
|
205 |
+
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
|
206 |
+
h_slices = (slice(0, -self.window_size),
|
207 |
+
slice(-self.window_size, -self.shift_size),
|
208 |
+
slice(-self.shift_size, None))
|
209 |
+
w_slices = (slice(0, -self.window_size),
|
210 |
+
slice(-self.window_size, -self.shift_size),
|
211 |
+
slice(-self.shift_size, None))
|
212 |
+
cnt = 0
|
213 |
+
for h in h_slices:
|
214 |
+
for w in w_slices:
|
215 |
+
img_mask[:, h, w, :] = cnt
|
216 |
+
cnt += 1
|
217 |
+
|
218 |
+
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
|
219 |
+
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
220 |
+
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
221 |
+
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
|
222 |
+
else:
|
223 |
+
attn_mask = None
|
224 |
+
|
225 |
+
self.register_buffer("attn_mask", attn_mask)
|
226 |
+
|
227 |
+
def forward(self, x):
|
228 |
+
H, W = self.input_resolution
|
229 |
+
B, L, C = x.shape
|
230 |
+
# assert L == H * W, "input feature has wrong size"
|
231 |
+
|
232 |
+
shortcut = x
|
233 |
+
x = self.norm1(x)
|
234 |
+
x = x.view(B, H, W, C)
|
235 |
+
|
236 |
+
# cyclic shift
|
237 |
+
if self.shift_size > 0:
|
238 |
+
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
|
239 |
+
else:
|
240 |
+
shifted_x = x
|
241 |
+
|
242 |
+
# partition windows
|
243 |
+
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
|
244 |
+
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
|
245 |
+
|
246 |
+
# W-MSA/SW-MSA
|
247 |
+
attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C
|
248 |
+
|
249 |
+
# merge windows
|
250 |
+
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
251 |
+
shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
|
252 |
+
|
253 |
+
# reverse cyclic shift
|
254 |
+
if self.shift_size > 0:
|
255 |
+
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
|
256 |
+
else:
|
257 |
+
x = shifted_x
|
258 |
+
x = x.view(B, H * W, C)
|
259 |
+
|
260 |
+
# FFN
|
261 |
+
x = shortcut + self.drop_path(x)
|
262 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
263 |
+
|
264 |
+
return x
|
265 |
+
|
266 |
+
def extra_repr(self) -> str:
|
267 |
+
return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
|
268 |
+
f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"
|
269 |
+
|
270 |
+
def flops(self):
|
271 |
+
flops = 0
|
272 |
+
H, W = self.input_resolution
|
273 |
+
# norm1
|
274 |
+
flops += self.dim * H * W
|
275 |
+
# W-MSA/SW-MSA
|
276 |
+
nW = H * W / self.window_size / self.window_size
|
277 |
+
flops += nW * self.attn.flops(self.window_size * self.window_size)
|
278 |
+
# mlp
|
279 |
+
flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
|
280 |
+
# norm2
|
281 |
+
flops += self.dim * H * W
|
282 |
+
return flops
|
283 |
+
|
284 |
+
|
285 |
+
class PatchMerging(nn.Module):
|
286 |
+
r""" Patch Merging Layer.
|
287 |
+
|
288 |
+
Args:
|
289 |
+
input_resolution (tuple[int]): Resolution of input feature.
|
290 |
+
dim (int): Number of input channels.
|
291 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
292 |
+
"""
|
293 |
+
|
294 |
+
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
|
295 |
+
super().__init__()
|
296 |
+
self.input_resolution = input_resolution
|
297 |
+
self.dim = dim
|
298 |
+
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
299 |
+
self.norm = norm_layer(4 * dim)
|
300 |
+
|
301 |
+
def forward(self, x):
|
302 |
+
"""
|
303 |
+
x: B, H*W, C
|
304 |
+
"""
|
305 |
+
H, W = self.input_resolution
|
306 |
+
B, L, C = x.shape
|
307 |
+
assert L == H * W, "input feature has wrong size"
|
308 |
+
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
|
309 |
+
|
310 |
+
x = x.view(B, H, W, C)
|
311 |
+
|
312 |
+
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
|
313 |
+
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
|
314 |
+
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
|
315 |
+
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
|
316 |
+
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
|
317 |
+
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
|
318 |
+
|
319 |
+
x = self.norm(x)
|
320 |
+
x = self.reduction(x)
|
321 |
+
|
322 |
+
return x
|
323 |
+
|
324 |
+
def extra_repr(self) -> str:
|
325 |
+
return f"input_resolution={self.input_resolution}, dim={self.dim}"
|
326 |
+
|
327 |
+
def flops(self):
|
328 |
+
H, W = self.input_resolution
|
329 |
+
flops = H * W * self.dim
|
330 |
+
flops += (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim
|
331 |
+
return flops
|
332 |
+
|
333 |
+
|
334 |
+
# Dual up-sample
|
335 |
+
class UpSample(nn.Module):
|
336 |
+
def __init__(self, input_resolution, in_channels, scale_factor):
|
337 |
+
super(UpSample, self).__init__()
|
338 |
+
self.input_resolution = input_resolution
|
339 |
+
self.factor = scale_factor
|
340 |
+
|
341 |
+
|
342 |
+
if self.factor == 2:
|
343 |
+
self.conv = nn.Conv2d(in_channels, in_channels//2, 1, 1, 0, bias=False)
|
344 |
+
self.up_p = nn.Sequential(nn.Conv2d(in_channels, 2*in_channels, 1, 1, 0, bias=False),
|
345 |
+
nn.PReLU(),
|
346 |
+
nn.PixelShuffle(scale_factor),
|
347 |
+
nn.Conv2d(in_channels//2, in_channels//2, 1, stride=1, padding=0, bias=False))
|
348 |
+
|
349 |
+
self.up_b = nn.Sequential(nn.Conv2d(in_channels, in_channels, 1, 1, 0),
|
350 |
+
nn.PReLU(),
|
351 |
+
nn.Upsample(scale_factor=scale_factor, mode='bilinear', align_corners=False),
|
352 |
+
nn.Conv2d(in_channels, in_channels // 2, 1, stride=1, padding=0, bias=False))
|
353 |
+
elif self.factor == 4:
|
354 |
+
self.conv = nn.Conv2d(2*in_channels, in_channels, 1, 1, 0, bias=False)
|
355 |
+
self.up_p = nn.Sequential(nn.Conv2d(in_channels, 16 * in_channels, 1, 1, 0, bias=False),
|
356 |
+
nn.PReLU(),
|
357 |
+
nn.PixelShuffle(scale_factor),
|
358 |
+
nn.Conv2d(in_channels, in_channels, 1, stride=1, padding=0, bias=False))
|
359 |
+
|
360 |
+
self.up_b = nn.Sequential(nn.Conv2d(in_channels, in_channels, 1, 1, 0),
|
361 |
+
nn.PReLU(),
|
362 |
+
nn.Upsample(scale_factor=scale_factor, mode='bilinear', align_corners=False),
|
363 |
+
nn.Conv2d(in_channels, in_channels, 1, stride=1, padding=0, bias=False))
|
364 |
+
|
365 |
+
def forward(self, x):
|
366 |
+
"""
|
367 |
+
x: B, L = H*W, C
|
368 |
+
"""
|
369 |
+
if type(self.input_resolution) == int:
|
370 |
+
H = self.input_resolution
|
371 |
+
W = self.input_resolution
|
372 |
+
|
373 |
+
elif type(self.input_resolution) == tuple:
|
374 |
+
H, W = self.input_resolution
|
375 |
+
|
376 |
+
B, L, C = x.shape
|
377 |
+
x = x.view(B, H, W, C) # B, H, W, C
|
378 |
+
x = x.permute(0, 3, 1, 2) # B, C, H, W
|
379 |
+
x_p = self.up_p(x) # pixel shuffle
|
380 |
+
x_b = self.up_b(x) # bilinear
|
381 |
+
out = self.conv(torch.cat([x_p, x_b], dim=1))
|
382 |
+
out = out.permute(0, 2, 3, 1) # B, H, W, C
|
383 |
+
if self.factor == 2:
|
384 |
+
out = out.view(B, -1, C // 2)
|
385 |
+
|
386 |
+
return out
|
387 |
+
|
388 |
+
|
389 |
+
class BasicLayer(nn.Module):
|
390 |
+
""" A basic Swin Transformer layer for one stage.
|
391 |
+
|
392 |
+
Args:
|
393 |
+
dim (int): Number of input channels.
|
394 |
+
input_resolution (tuple[int]): Input resolution.
|
395 |
+
depth (int): Number of blocks.
|
396 |
+
num_heads (int): Number of attention heads.
|
397 |
+
window_size (int): Local window size.
|
398 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
399 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
400 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
401 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
402 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
403 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
404 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
405 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
406 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
407 |
+
"""
|
408 |
+
|
409 |
+
def __init__(self, dim, input_resolution, depth, num_heads, window_size,
|
410 |
+
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
|
411 |
+
drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False):
|
412 |
+
|
413 |
+
super().__init__()
|
414 |
+
self.dim = dim
|
415 |
+
self.input_resolution = input_resolution
|
416 |
+
self.depth = depth
|
417 |
+
self.use_checkpoint = use_checkpoint
|
418 |
+
|
419 |
+
# build blocks
|
420 |
+
self.blocks = nn.ModuleList([
|
421 |
+
SwinTransformerBlock(dim=dim, input_resolution=input_resolution,
|
422 |
+
num_heads=num_heads, window_size=window_size,
|
423 |
+
shift_size=0 if (i % 2 == 0) else window_size // 2,
|
424 |
+
mlp_ratio=mlp_ratio,
|
425 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale,
|
426 |
+
drop=drop, attn_drop=attn_drop,
|
427 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
428 |
+
norm_layer=norm_layer)
|
429 |
+
for i in range(depth)])
|
430 |
+
|
431 |
+
# patch merging layer
|
432 |
+
if downsample is not None:
|
433 |
+
self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
|
434 |
+
else:
|
435 |
+
self.downsample = None
|
436 |
+
|
437 |
+
def forward(self, x):
|
438 |
+
for blk in self.blocks:
|
439 |
+
if self.use_checkpoint:
|
440 |
+
x = checkpoint.checkpoint(blk, x)
|
441 |
+
else:
|
442 |
+
x = blk(x)
|
443 |
+
if self.downsample is not None:
|
444 |
+
x = self.downsample(x)
|
445 |
+
return x
|
446 |
+
|
447 |
+
def extra_repr(self) -> str:
|
448 |
+
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
|
449 |
+
|
450 |
+
def flops(self):
|
451 |
+
flops = 0
|
452 |
+
for blk in self.blocks:
|
453 |
+
flops += blk.flops()
|
454 |
+
if self.downsample is not None:
|
455 |
+
flops += self.downsample.flops()
|
456 |
+
return flops
|
457 |
+
|
458 |
+
|
459 |
+
class BasicLayer_up(nn.Module):
|
460 |
+
""" A basic Swin Transformer layer for one stage.
|
461 |
+
|
462 |
+
Args:
|
463 |
+
dim (int): Number of input channels.
|
464 |
+
input_resolution (tuple[int]): Input resolution.
|
465 |
+
depth (int): Number of blocks.
|
466 |
+
num_heads (int): Number of attention heads.
|
467 |
+
window_size (int): Local window size.
|
468 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
469 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
470 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
471 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
472 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
473 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
474 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
475 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
476 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
477 |
+
"""
|
478 |
+
|
479 |
+
def __init__(self, dim, input_resolution, depth, num_heads, window_size,
|
480 |
+
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
|
481 |
+
drop_path=0., norm_layer=nn.LayerNorm, upsample=None, use_checkpoint=False):
|
482 |
+
|
483 |
+
super().__init__()
|
484 |
+
self.dim = dim
|
485 |
+
self.input_resolution = input_resolution
|
486 |
+
self.depth = depth
|
487 |
+
self.use_checkpoint = use_checkpoint
|
488 |
+
|
489 |
+
# build blocks
|
490 |
+
self.blocks = nn.ModuleList([
|
491 |
+
SwinTransformerBlock(dim=dim, input_resolution=input_resolution,
|
492 |
+
num_heads=num_heads, window_size=window_size,
|
493 |
+
shift_size=0 if (i % 2 == 0) else window_size // 2,
|
494 |
+
mlp_ratio=mlp_ratio,
|
495 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale,
|
496 |
+
drop=drop, attn_drop=attn_drop,
|
497 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
498 |
+
norm_layer=norm_layer)
|
499 |
+
for i in range(depth)])
|
500 |
+
|
501 |
+
# patch merging layer
|
502 |
+
if upsample is not None:
|
503 |
+
self.upsample = UpSample(input_resolution, in_channels=dim, scale_factor=2)
|
504 |
+
else:
|
505 |
+
self.upsample = None
|
506 |
+
|
507 |
+
def forward(self, x):
|
508 |
+
for blk in self.blocks:
|
509 |
+
if self.use_checkpoint:
|
510 |
+
x = checkpoint.checkpoint(blk, x)
|
511 |
+
else:
|
512 |
+
x = blk(x)
|
513 |
+
if self.upsample is not None:
|
514 |
+
x = self.upsample(x)
|
515 |
+
return x
|
516 |
+
|
517 |
+
|
518 |
+
class PatchEmbed(nn.Module):
|
519 |
+
r""" Image to Patch Embedding
|
520 |
+
|
521 |
+
Args:
|
522 |
+
img_size (int): Image size. Default: 224.
|
523 |
+
patch_size (int): Patch token size. Default: 4.
|
524 |
+
in_chans (int): Number of input image channels. Default: 3.
|
525 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
526 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
527 |
+
"""
|
528 |
+
|
529 |
+
def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
|
530 |
+
super().__init__()
|
531 |
+
img_size = to_2tuple(img_size)
|
532 |
+
patch_size = to_2tuple(patch_size)
|
533 |
+
patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
|
534 |
+
self.img_size = img_size
|
535 |
+
self.patch_size = patch_size
|
536 |
+
self.patches_resolution = patches_resolution
|
537 |
+
self.num_patches = patches_resolution[0] * patches_resolution[1]
|
538 |
+
|
539 |
+
self.in_chans = in_chans
|
540 |
+
self.embed_dim = embed_dim
|
541 |
+
|
542 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
543 |
+
if norm_layer is not None:
|
544 |
+
self.norm = norm_layer(embed_dim)
|
545 |
+
else:
|
546 |
+
self.norm = None
|
547 |
+
|
548 |
+
def forward(self, x):
|
549 |
+
B, C, H, W = x.shape
|
550 |
+
# FIXME look at relaxing size constraints
|
551 |
+
# assert H == self.img_size[0] and W == self.img_size[1], \
|
552 |
+
# f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
553 |
+
x = self.proj(x).flatten(2).transpose(1, 2) # B Ph*Pw C
|
554 |
+
if self.norm is not None:
|
555 |
+
x = self.norm(x)
|
556 |
+
return x
|
557 |
+
|
558 |
+
def flops(self):
|
559 |
+
Ho, Wo = self.patches_resolution
|
560 |
+
flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
|
561 |
+
if self.norm is not None:
|
562 |
+
flops += Ho * Wo * self.embed_dim
|
563 |
+
return flops
|
564 |
+
|
565 |
+
|
566 |
+
class SUNet(nn.Module):
|
567 |
+
r""" Swin Transformer
|
568 |
+
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
|
569 |
+
https://arxiv.org/pdf/2103.14030
|
570 |
+
|
571 |
+
Args:
|
572 |
+
img_size (int | tuple(int)): Input image size. Default 224
|
573 |
+
patch_size (int | tuple(int)): Patch size. Default: 4
|
574 |
+
in_chans (int): Number of input image channels. Default: 3
|
575 |
+
|
576 |
+
embed_dim (int): Patch embedding dimension. Default: 96
|
577 |
+
depths (tuple(int)): Depth of each Swin Transformer layer.
|
578 |
+
num_heads (tuple(int)): Number of attention heads in different layers.
|
579 |
+
window_size (int): Window size. Default: 7
|
580 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
|
581 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
582 |
+
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
|
583 |
+
drop_rate (float): Dropout rate. Default: 0
|
584 |
+
attn_drop_rate (float): Attention dropout rate. Default: 0
|
585 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.1
|
586 |
+
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
|
587 |
+
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
|
588 |
+
patch_norm (bool): If True, add normalization after patch embedding. Default: True
|
589 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
|
590 |
+
"""
|
591 |
+
|
592 |
+
def __init__(self, img_size=224, patch_size=4, in_chans=3, out_chans=3,
|
593 |
+
embed_dim=96, depths=[2, 2, 2, 2], num_heads=[3, 6, 12, 24],
|
594 |
+
window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None,
|
595 |
+
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
|
596 |
+
norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
|
597 |
+
use_checkpoint=False, final_upsample="Dual up-sample", **kwargs):
|
598 |
+
super(SUNet, self).__init__()
|
599 |
+
|
600 |
+
self.out_chans = out_chans
|
601 |
+
self.num_layers = len(depths)
|
602 |
+
self.embed_dim = embed_dim
|
603 |
+
self.ape = ape
|
604 |
+
self.patch_norm = patch_norm
|
605 |
+
self.num_features = int(embed_dim * 2 ** (self.num_layers - 1))
|
606 |
+
self.num_features_up = int(embed_dim * 2)
|
607 |
+
self.mlp_ratio = mlp_ratio
|
608 |
+
self.final_upsample = final_upsample
|
609 |
+
self.prelu = nn.PReLU()
|
610 |
+
self.conv_first = nn.Conv2d(in_chans, embed_dim, 3, 1, 1)
|
611 |
+
|
612 |
+
# split image into non-overlapping patches
|
613 |
+
self.patch_embed = PatchEmbed(
|
614 |
+
img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim,
|
615 |
+
norm_layer=norm_layer if self.patch_norm else None)
|
616 |
+
num_patches = self.patch_embed.num_patches
|
617 |
+
patches_resolution = self.patch_embed.patches_resolution
|
618 |
+
self.patches_resolution = patches_resolution
|
619 |
+
|
620 |
+
# absolute position embedding
|
621 |
+
if self.ape:
|
622 |
+
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
|
623 |
+
trunc_normal_(self.absolute_pos_embed, std=.02)
|
624 |
+
|
625 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
626 |
+
|
627 |
+
# stochastic depth
|
628 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
|
629 |
+
|
630 |
+
# build encoder and bottleneck layers
|
631 |
+
self.layers = nn.ModuleList()
|
632 |
+
for i_layer in range(self.num_layers):
|
633 |
+
layer = BasicLayer(dim=int(embed_dim * 2 ** i_layer),
|
634 |
+
input_resolution=(patches_resolution[0] // (2 ** i_layer),
|
635 |
+
patches_resolution[1] // (2 ** i_layer)),
|
636 |
+
depth=depths[i_layer],
|
637 |
+
num_heads=num_heads[i_layer],
|
638 |
+
window_size=window_size,
|
639 |
+
mlp_ratio=self.mlp_ratio,
|
640 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale,
|
641 |
+
drop=drop_rate, attn_drop=attn_drop_rate,
|
642 |
+
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
|
643 |
+
norm_layer=norm_layer,
|
644 |
+
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
|
645 |
+
use_checkpoint=use_checkpoint)
|
646 |
+
self.layers.append(layer)
|
647 |
+
|
648 |
+
# build decoder layers
|
649 |
+
self.layers_up = nn.ModuleList()
|
650 |
+
self.concat_back_dim = nn.ModuleList()
|
651 |
+
for i_layer in range(self.num_layers):
|
652 |
+
concat_linear = nn.Linear(2 * int(embed_dim * 2 ** (self.num_layers - 1 - i_layer)),
|
653 |
+
int(embed_dim * 2 ** (
|
654 |
+
self.num_layers - 1 - i_layer))) if i_layer > 0 else nn.Identity()
|
655 |
+
if i_layer == 0:
|
656 |
+
layer_up = UpSample(input_resolution=patches_resolution[0] // (2 ** (self.num_layers - 1 - i_layer)),
|
657 |
+
in_channels=int(embed_dim * 2 ** (self.num_layers - 1 - i_layer)), scale_factor=2)
|
658 |
+
else:
|
659 |
+
layer_up = BasicLayer_up(dim=int(embed_dim * 2 ** (self.num_layers - 1 - i_layer)),
|
660 |
+
input_resolution=(
|
661 |
+
patches_resolution[0] // (2 ** (self.num_layers - 1 - i_layer)),
|
662 |
+
patches_resolution[1] // (2 ** (self.num_layers - 1 - i_layer))),
|
663 |
+
depth=depths[(self.num_layers - 1 - i_layer)],
|
664 |
+
num_heads=num_heads[(self.num_layers - 1 - i_layer)],
|
665 |
+
window_size=window_size,
|
666 |
+
mlp_ratio=self.mlp_ratio,
|
667 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale,
|
668 |
+
drop=drop_rate, attn_drop=attn_drop_rate,
|
669 |
+
drop_path=dpr[sum(depths[:(self.num_layers - 1 - i_layer)]):sum(
|
670 |
+
depths[:(self.num_layers - 1 - i_layer) + 1])],
|
671 |
+
norm_layer=norm_layer,
|
672 |
+
upsample=UpSample if (i_layer < self.num_layers - 1) else None,
|
673 |
+
use_checkpoint=use_checkpoint)
|
674 |
+
self.layers_up.append(layer_up)
|
675 |
+
self.concat_back_dim.append(concat_linear)
|
676 |
+
|
677 |
+
self.norm = norm_layer(self.num_features)
|
678 |
+
self.norm_up = norm_layer(self.embed_dim)
|
679 |
+
|
680 |
+
if self.final_upsample == "Dual up-sample":
|
681 |
+
self.up = UpSample(input_resolution=(img_size // patch_size, img_size // patch_size),
|
682 |
+
in_channels=embed_dim, scale_factor=4)
|
683 |
+
self.output = nn.Conv2d(in_channels=embed_dim, out_channels=self.out_chans, kernel_size=3, stride=1,
|
684 |
+
padding=1, bias=False) # kernel = 1
|
685 |
+
|
686 |
+
self.apply(self._init_weights)
|
687 |
+
|
688 |
+
def _init_weights(self, m):
|
689 |
+
if isinstance(m, nn.Linear):
|
690 |
+
trunc_normal_(m.weight, std=.02)
|
691 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
692 |
+
nn.init.constant_(m.bias, 0)
|
693 |
+
elif isinstance(m, nn.LayerNorm):
|
694 |
+
nn.init.constant_(m.bias, 0)
|
695 |
+
nn.init.constant_(m.weight, 1.0)
|
696 |
+
|
697 |
+
@torch.jit.ignore
|
698 |
+
def no_weight_decay(self):
|
699 |
+
return {'absolute_pos_embed'}
|
700 |
+
|
701 |
+
@torch.jit.ignore
|
702 |
+
def no_weight_decay_keywords(self):
|
703 |
+
return {'relative_position_bias_table'}
|
704 |
+
|
705 |
+
# Encoder and Bottleneck
|
706 |
+
def forward_features(self, x):
|
707 |
+
residual = x
|
708 |
+
x = self.patch_embed(x)
|
709 |
+
if self.ape:
|
710 |
+
x = x + self.absolute_pos_embed
|
711 |
+
x = self.pos_drop(x)
|
712 |
+
x_downsample = []
|
713 |
+
|
714 |
+
for layer in self.layers:
|
715 |
+
x_downsample.append(x)
|
716 |
+
x = layer(x)
|
717 |
+
|
718 |
+
x = self.norm(x) # B L C
|
719 |
+
|
720 |
+
return x, residual, x_downsample
|
721 |
+
|
722 |
+
# Dencoder and Skip connection
|
723 |
+
def forward_up_features(self, x, x_downsample):
|
724 |
+
for inx, layer_up in enumerate(self.layers_up):
|
725 |
+
if inx == 0:
|
726 |
+
x = layer_up(x)
|
727 |
+
else:
|
728 |
+
x = torch.cat([x, x_downsample[3 - inx]], -1) # concat last dimension
|
729 |
+
x = self.concat_back_dim[inx](x)
|
730 |
+
x = layer_up(x)
|
731 |
+
|
732 |
+
x = self.norm_up(x) # B L C
|
733 |
+
|
734 |
+
return x
|
735 |
+
|
736 |
+
def up_x4(self, x):
|
737 |
+
H, W = self.patches_resolution
|
738 |
+
B, L, C = x.shape
|
739 |
+
assert L == H * W, "input features has wrong size"
|
740 |
+
|
741 |
+
if self.final_upsample == "Dual up-sample":
|
742 |
+
x = self.up(x)
|
743 |
+
# x = x.view(B, 4 * H, 4 * W, -1)
|
744 |
+
x = x.permute(0, 3, 1, 2) # B,C,H,W
|
745 |
+
|
746 |
+
return x
|
747 |
+
|
748 |
+
def forward(self, x):
|
749 |
+
x = self.conv_first(x)
|
750 |
+
x, residual, x_downsample = self.forward_features(x)
|
751 |
+
x = self.forward_up_features(x, x_downsample)
|
752 |
+
x = self.up_x4(x)
|
753 |
+
out = self.output(x)
|
754 |
+
# x = x + residual
|
755 |
+
return out
|
756 |
+
|
757 |
+
def flops(self):
|
758 |
+
flops = 0
|
759 |
+
flops += self.patch_embed.flops()
|
760 |
+
for i, layer in enumerate(self.layers):
|
761 |
+
flops += layer.flops()
|
762 |
+
flops += self.num_features * self.patches_resolution[0] * self.patches_resolution[1] // (2 ** self.num_layers)
|
763 |
+
flops += self.num_features * self.out_chans
|
764 |
+
return flops
|
765 |
+
|
766 |
+
|
767 |
+
if __name__ == '__main__':
|
768 |
+
from utils.model_utils import network_parameters
|
769 |
+
|
770 |
+
height = 256
|
771 |
+
width = 256
|
772 |
+
x = torch.randn((1, 3, height, width)) # .cuda()
|
773 |
+
model = SUNet(img_size=256, patch_size=4, in_chans=3, out_chans=3,
|
774 |
+
embed_dim=96, depths=[8, 8, 8, 8],
|
775 |
+
num_heads=[8, 8, 8, 8],
|
776 |
+
window_size=8, mlp_ratio=4., qkv_bias=True, qk_scale=2,
|
777 |
+
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
|
778 |
+
norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
|
779 |
+
use_checkpoint=False, final_upsample="Dual up-sample") # .cuda()
|
780 |
+
# print(model)
|
781 |
+
print('input image size: (%d, %d)' % (height, width))
|
782 |
+
print('FLOPs: %.4f G' % (model.flops() / 1e9))
|
783 |
+
print('model parameters: ', network_parameters(model))
|
784 |
+
# x = model(x)
|
785 |
+
print('output image size: ', x.shape)
|
786 |
+
flops, params = profile(model, (x,))
|
787 |
+
print(flops)
|
788 |
+
print(params)
|