52Hz commited on
Commit
e0e3b59
·
1 Parent(s): 0df3186

Delete model/SRMNet

Browse files
Files changed (1) hide show
  1. model/SRMNet +0 -227
model/SRMNet DELETED
@@ -1,227 +0,0 @@
1
- import torch
2
- import torch.nn as nn
3
-
4
- ##---------- Basic Layers ----------
5
- def conv3x3(in_chn, out_chn, bias=True):
6
- layer = nn.Conv2d(in_chn, out_chn, kernel_size=3, stride=1, padding=1, bias=bias)
7
- return layer
8
-
9
- def conv(in_channels, out_channels, kernel_size, bias=False, stride=1):
10
- return nn.Conv2d(
11
- in_channels, out_channels, kernel_size,
12
- padding=(kernel_size // 2), bias=bias, stride=stride)
13
-
14
- def bili_resize(factor):
15
- return nn.Upsample(scale_factor=factor, mode='bilinear', align_corners=False)
16
-
17
- ##---------- Basic Blocks ----------
18
- class UNetConvBlock(nn.Module):
19
- def __init__(self, in_size, out_size, downsample):
20
- super(UNetConvBlock, self).__init__()
21
- self.downsample = downsample
22
- self.block = SK_RDB(in_channels=in_size, growth_rate=out_size, num_layers=3)
23
- if downsample:
24
- self.downsample = PS_down(out_size, out_size, downscale=2)
25
-
26
- def forward(self, x):
27
- out = self.block(x)
28
- if self.downsample:
29
- out_down = self.downsample(out)
30
- return out_down, out
31
- else:
32
- return out
33
-
34
- class UNetUpBlock(nn.Module):
35
- def __init__(self, in_size, out_size):
36
- super(UNetUpBlock, self).__init__()
37
- # self.up = nn.ConvTranspose2d(in_size, out_size, kernel_size=2, stride=2, bias=True)
38
- self.up = PS_up(in_size, out_size, upscale=2)
39
- self.conv_block = UNetConvBlock(in_size, out_size, False)
40
-
41
- def forward(self, x, bridge):
42
- up = self.up(x)
43
- out = torch.cat([up, bridge], dim=1)
44
- out = self.conv_block(out)
45
- return out
46
-
47
- ##---------- Resizing Modules (Pixel(Un)Shuffle) ----------
48
- class PS_down(nn.Module):
49
- def __init__(self, in_size, out_size, downscale):
50
- super(PS_down, self).__init__()
51
- self.UnPS = nn.PixelUnshuffle(downscale)
52
- self.conv1 = nn.Conv2d((downscale**2) * in_size, out_size, 1, 1, 0)
53
-
54
- def forward(self, x):
55
- x = self.UnPS(x) # h/2, w/2, 4*c
56
- x = self.conv1(x)
57
- return x
58
-
59
- class PS_up(nn.Module):
60
- def __init__(self, in_size, out_size, upscale):
61
- super(PS_up, self).__init__()
62
-
63
- self.PS = nn.PixelShuffle(upscale)
64
- self.conv1 = nn.Conv2d(in_size//(upscale**2), out_size, 1, 1, 0)
65
-
66
- def forward(self, x):
67
- x = self.PS(x) # h/2, w/2, 4*c
68
- x = self.conv1(x)
69
- return x
70
-
71
- ##---------- Selective Kernel Feature Fusion (SKFF) ----------
72
- class SKFF(nn.Module):
73
- def __init__(self, in_channels, height=3, reduction=8, bias=False):
74
- super(SKFF, self).__init__()
75
-
76
- self.height = height
77
- d = max(int(in_channels / reduction), 4)
78
-
79
- self.avg_pool = nn.AdaptiveAvgPool2d(1)
80
- self.conv_du = nn.Sequential(nn.Conv2d(in_channels, d, 1, padding=0, bias=bias), nn.PReLU())
81
-
82
- self.fcs = nn.ModuleList([])
83
- for i in range(self.height):
84
- self.fcs.append(nn.Conv2d(d, in_channels, kernel_size=1, stride=1, bias=bias))
85
-
86
- self.softmax = nn.Softmax(dim=1)
87
-
88
- def forward(self, inp_feats):
89
- batch_size, n_feats, H, W = inp_feats[1].shape
90
-
91
- inp_feats = torch.cat(inp_feats, dim=1)
92
- inp_feats = inp_feats.view(batch_size, self.height, n_feats, inp_feats.shape[2], inp_feats.shape[3])
93
-
94
- feats_U = torch.sum(inp_feats, dim=1)
95
- feats_S = self.avg_pool(feats_U)
96
- feats_Z = self.conv_du(feats_S)
97
-
98
- attention_vectors = [fc(feats_Z) for fc in self.fcs]
99
- attention_vectors = torch.cat(attention_vectors, dim=1)
100
- attention_vectors = attention_vectors.view(batch_size, self.height, n_feats, 1, 1)
101
-
102
- attention_vectors = self.softmax(attention_vectors)
103
- feats_V = torch.sum(inp_feats * attention_vectors, dim=1)
104
-
105
- return feats_V
106
-
107
- ##---------- Dense Block ----------
108
- class DenseLayer(nn.Module):
109
- def __init__(self, in_channels, out_channels, I):
110
- super(DenseLayer, self).__init__()
111
- self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=3 // 2)
112
- self.relu = nn.ReLU(inplace=True)
113
- self.sk = SKFF(out_channels, height=2, reduction=8, bias=False)
114
-
115
- def forward(self, x):
116
- x1 = self.relu(self.conv(x))
117
- # output = torch.cat([x, x1], 1) # -> RDB
118
- output = self.sk((x, x1))
119
- return output
120
-
121
- ##---------- Selective Kernel Residual Dense Block (SK-RDB) ----------
122
- class SK_RDB(nn.Module):
123
- def __init__(self, in_channels, growth_rate, num_layers):
124
- super(SK_RDB, self).__init__()
125
- self.identity = nn.Conv2d(in_channels, growth_rate, 1, 1, 0)
126
- self.layers = nn.Sequential(
127
- *[DenseLayer(in_channels, in_channels, I=i) for i in range(num_layers)]
128
- )
129
- self.lff = nn.Conv2d(in_channels, growth_rate, kernel_size=1)
130
-
131
- def forward(self, x):
132
- res = self.identity(x)
133
- x = self.layers(x)
134
- x = self.lff(x)
135
- return res + x
136
-
137
- ##---------- testNet ----------
138
- class SRMNet(nn.Module):
139
- def __init__(self, in_chn=3, wf=96, depth=4):
140
- super(SRMNet, self).__init__()
141
- self.depth = depth
142
- self.down_path = nn.ModuleList()
143
- self.bili_down = bili_resize(0.5)
144
- self.conv_01 = nn.Conv2d(in_chn, wf, 3, 1, 1)
145
-
146
- # encoder of UNet
147
- prev_channels = 0
148
- for i in range(depth): # 0,1,2,3
149
- downsample = True if (i + 1) < depth else False
150
- self.down_path.append(UNetConvBlock(prev_channels + wf, (2 ** i) * wf, downsample))
151
- prev_channels = (2 ** i) * wf
152
-
153
- # decoder of UNet
154
- self.up_path = nn.ModuleList()
155
- self.skip_conv = nn.ModuleList()
156
- self.conv_up = nn.ModuleList()
157
- self.bottom_conv = nn.Conv2d(prev_channels, wf, 3, 1, 1)
158
- self.bottom_up = bili_resize(2 ** (depth-1))
159
-
160
- for i in reversed(range(depth - 1)):
161
- self.up_path.append(UNetUpBlock(prev_channels, (2 ** i) * wf))
162
- self.skip_conv.append(nn.Conv2d((2 ** i) * wf, (2 ** i) * wf, 3, 1, 1))
163
- self.conv_up.append(nn.Sequential(*[nn.Conv2d((2 ** i) * wf, wf, 3, 1, 1), bili_resize(2 ** i)]))
164
- prev_channels = (2 ** i) * wf
165
-
166
- self.final_ff = SKFF(in_channels=wf, height=depth)
167
- self.last = conv3x3(prev_channels, in_chn, bias=True)
168
-
169
- def forward(self, x):
170
- img = x
171
- scale_img = img
172
-
173
- ##### shallow conv #####
174
- x1 = self.conv_01(img)
175
- encs = []
176
- ######## UNet ########
177
- # Down-path (Encoder)
178
- for i, down in enumerate(self.down_path):
179
- if i == 0:
180
- x1, x1_up = down(x1)
181
- encs.append(x1_up)
182
- elif (i + 1) < self.depth:
183
- scale_img = self.bili_down(scale_img)
184
- left_bar = self.conv_01(scale_img)
185
- x1 = torch.cat([x1, left_bar], dim=1)
186
- x1, x1_up = down(x1)
187
- encs.append(x1_up)
188
- else:
189
- scale_img = self.bili_down(scale_img)
190
- left_bar = self.conv_01(scale_img)
191
- x1 = torch.cat([x1, left_bar], dim=1)
192
- x1 = down(x1)
193
-
194
- # Up-path (Decoder)
195
- ms_result = [self.bottom_up(self.bottom_conv(x1))]
196
- for i, up in enumerate(self.up_path):
197
- x1 = up(x1, self.skip_conv[i](encs[-i - 1]))
198
- ms_result.append(self.conv_up[i](x1))
199
-
200
- # Multi-scale selective feature fusion
201
- msff_result = self.final_ff(ms_result)
202
-
203
- ##### Reconstruct #####
204
- out_1 = self.last(msff_result) + img
205
-
206
- return out_1
207
-
208
-
209
- if __name__ == "__main__":
210
- from thop import profile
211
-
212
- input = torch.ones(1, 3, 256, 256, dtype=torch.float, requires_grad=False)
213
- model = SRMNet(in_chn=3, wf=96, depth=4)
214
- out = model(input)
215
- flops, params = profile(model, inputs=(input,))
216
- total = sum(p.numel() for p in model.parameters())
217
-
218
- # RDBlayer = SK_RDB(in_channels=64, growth_rate=64, num_layers=3)
219
- # print(RDBlayer)
220
- # out = RDBlayer(input)
221
- # flops, params = profile(RDBlayer, inputs=(input,))
222
-
223
- print('input shape:', input.shape)
224
- print('output shape', out.shape)
225
- print("-----------------------------------")
226
- print("Total params: %.4f M" % (total / 1e6))
227
- print("Total params: %.4f G" % (flops / 1e9))