52Hz commited on
Commit
99ab341
1 Parent(s): a3fcc55

Delete utils/util_calculate_psnr_ssim.py

Browse files
Files changed (1) hide show
  1. utils/util_calculate_psnr_ssim.py +0 -841
utils/util_calculate_psnr_ssim.py DELETED
@@ -1,841 +0,0 @@
1
- # -----------------------------------------------------------------------------------
2
- # SwinIR: Image Restoration Using Swin Transformer, https://arxiv.org/abs/2108.10257
3
- # Originally Written by Ze Liu, Modified by Jingyun Liang.
4
- # -----------------------------------------------------------------------------------
5
-
6
- import math
7
- import torch
8
- import torch.nn as nn
9
- import torch.utils.checkpoint as checkpoint
10
- from timm.models.layers import DropPath, to_2tuple, trunc_normal_
11
-
12
-
13
- class Mlp(nn.Module):
14
- def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
15
- super().__init__()
16
- out_features = out_features or in_features
17
- hidden_features = hidden_features or in_features
18
- self.fc1 = nn.Linear(in_features, hidden_features)
19
- self.act = act_layer()
20
- self.fc2 = nn.Linear(hidden_features, out_features)
21
- self.drop = nn.Dropout(drop)
22
-
23
- def forward(self, x):
24
- x = self.fc1(x)
25
- x = self.act(x)
26
- x = self.drop(x)
27
- x = self.fc2(x)
28
- x = self.drop(x)
29
- return x
30
-
31
-
32
- def window_partition(x, window_size):
33
- """
34
- Args:
35
- x: (B, H, W, C)
36
- window_size (int): window size
37
- Returns:
38
- windows: (num_windows*B, window_size, window_size, C)
39
- """
40
- B, H, W, C = x.shape
41
- x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
42
- windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
43
- return windows
44
-
45
-
46
- def window_reverse(windows, window_size, H, W):
47
- """
48
- Args:
49
- windows: (num_windows*B, window_size, window_size, C)
50
- window_size (int): Window size
51
- H (int): Height of image
52
- W (int): Width of image
53
- Returns:
54
- x: (B, H, W, C)
55
- """
56
- B = int(windows.shape[0] / (H * W / window_size / window_size))
57
- x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
58
- x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
59
- return x
60
-
61
-
62
- class WindowAttention(nn.Module):
63
- r""" Window based multi-head self attention (W-MSA) module with relative position bias.
64
- It supports both of shifted and non-shifted window.
65
- Args:
66
- dim (int): Number of input channels.
67
- window_size (tuple[int]): The height and width of the window.
68
- num_heads (int): Number of attention heads.
69
- qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
70
- qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
71
- attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
72
- proj_drop (float, optional): Dropout ratio of output. Default: 0.0
73
- """
74
-
75
- def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
76
-
77
- super().__init__()
78
- self.dim = dim
79
- self.window_size = window_size # Wh, Ww
80
- self.num_heads = num_heads
81
- head_dim = dim // num_heads
82
- self.scale = qk_scale or head_dim ** -0.5
83
-
84
- # define a parameter table of relative position bias
85
- self.relative_position_bias_table = nn.Parameter(
86
- torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
87
-
88
- # get pair-wise relative position index for each token inside the window
89
- coords_h = torch.arange(self.window_size[0])
90
- coords_w = torch.arange(self.window_size[1])
91
- coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
92
- coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
93
- relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
94
- relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
95
- relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
96
- relative_coords[:, :, 1] += self.window_size[1] - 1
97
- relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
98
- relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
99
- self.register_buffer("relative_position_index", relative_position_index)
100
-
101
- self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
102
- self.attn_drop = nn.Dropout(attn_drop)
103
- self.proj = nn.Linear(dim, dim)
104
-
105
- self.proj_drop = nn.Dropout(proj_drop)
106
-
107
- trunc_normal_(self.relative_position_bias_table, std=.02)
108
- self.softmax = nn.Softmax(dim=-1)
109
-
110
- def forward(self, x, mask=None):
111
- """
112
- Args:
113
- x: input features with shape of (num_windows*B, N, C)
114
- mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
115
- """
116
- B_, N, C = x.shape
117
- qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
118
- q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
119
-
120
- q = q * self.scale
121
- attn = (q @ k.transpose(-2, -1))
122
-
123
- relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
124
- self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
125
- relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
126
- attn = attn + relative_position_bias.unsqueeze(0)
127
-
128
- if mask is not None:
129
- nW = mask.shape[0]
130
- attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
131
- attn = attn.view(-1, self.num_heads, N, N)
132
- attn = self.softmax(attn)
133
- else:
134
- attn = self.softmax(attn)
135
-
136
- attn = self.attn_drop(attn)
137
-
138
- x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
139
- x = self.proj(x)
140
- x = self.proj_drop(x)
141
- return x
142
-
143
- def extra_repr(self) -> str:
144
- return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}'
145
-
146
- def flops(self, N):
147
- # calculate flops for 1 window with token length of N
148
- flops = 0
149
- # qkv = self.qkv(x)
150
- flops += N * self.dim * 3 * self.dim
151
- # attn = (q @ k.transpose(-2, -1))
152
- flops += self.num_heads * N * (self.dim // self.num_heads) * N
153
- # x = (attn @ v)
154
- flops += self.num_heads * N * N * (self.dim // self.num_heads)
155
- # x = self.proj(x)
156
- flops += N * self.dim * self.dim
157
- return flops
158
-
159
-
160
- class SwinTransformerBlock(nn.Module):
161
- r""" Swin Transformer Block.
162
- Args:
163
- dim (int): Number of input channels.
164
- input_resolution (tuple[int]): Input resulotion.
165
- num_heads (int): Number of attention heads.
166
- window_size (int): Window size.
167
- shift_size (int): Shift size for SW-MSA.
168
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
169
- qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
170
- qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
171
- drop (float, optional): Dropout rate. Default: 0.0
172
- attn_drop (float, optional): Attention dropout rate. Default: 0.0
173
- drop_path (float, optional): Stochastic depth rate. Default: 0.0
174
- act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
175
- norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
176
- """
177
-
178
- def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0,
179
- mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
180
- act_layer=nn.GELU, norm_layer=nn.LayerNorm):
181
- super().__init__()
182
- self.dim = dim
183
- self.input_resolution = input_resolution
184
- self.num_heads = num_heads
185
- self.window_size = window_size
186
- self.shift_size = shift_size
187
- self.mlp_ratio = mlp_ratio
188
- if min(self.input_resolution) <= self.window_size:
189
- # if window size is larger than input resolution, we don't partition windows
190
- self.shift_size = 0
191
- self.window_size = min(self.input_resolution)
192
- assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
193
-
194
- self.norm1 = norm_layer(dim)
195
- self.attn = WindowAttention(
196
- dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
197
- qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
198
-
199
- self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
200
- self.norm2 = norm_layer(dim)
201
- mlp_hidden_dim = int(dim * mlp_ratio)
202
- self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
203
-
204
- if self.shift_size > 0:
205
- attn_mask = self.calculate_mask(self.input_resolution)
206
- else:
207
- attn_mask = None
208
-
209
- self.register_buffer("attn_mask", attn_mask)
210
-
211
- def calculate_mask(self, x_size):
212
- # calculate attention mask for SW-MSA
213
- H, W = x_size
214
- img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
215
- h_slices = (slice(0, -self.window_size),
216
- slice(-self.window_size, -self.shift_size),
217
- slice(-self.shift_size, None))
218
- w_slices = (slice(0, -self.window_size),
219
- slice(-self.window_size, -self.shift_size),
220
- slice(-self.shift_size, None))
221
- cnt = 0
222
- for h in h_slices:
223
- for w in w_slices:
224
- img_mask[:, h, w, :] = cnt
225
- cnt += 1
226
-
227
- mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
228
- mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
229
- attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
230
- attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
231
-
232
- return attn_mask
233
-
234
- def forward(self, x, x_size):
235
- H, W = x_size
236
- B, L, C = x.shape
237
- # assert L == H * W, "input feature has wrong size"
238
-
239
- shortcut = x
240
- x = self.norm1(x)
241
- x = x.view(B, H, W, C)
242
-
243
- # cyclic shift
244
- if self.shift_size > 0:
245
- shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
246
- else:
247
- shifted_x = x
248
-
249
- # partition windows
250
- x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
251
- x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
252
-
253
- # W-MSA/SW-MSA (to be compatible for testing on images whose shapes are the multiple of window size
254
- if self.input_resolution == x_size:
255
- attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C
256
- else:
257
- attn_windows = self.attn(x_windows, mask=self.calculate_mask(x_size).to(x.device))
258
-
259
- # merge windows
260
- attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
261
- shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
262
-
263
- # reverse cyclic shift
264
- if self.shift_size > 0:
265
- x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
266
- else:
267
- x = shifted_x
268
- x = x.view(B, H * W, C)
269
-
270
- # FFN
271
- x = shortcut + self.drop_path(x)
272
- x = x + self.drop_path(self.mlp(self.norm2(x)))
273
-
274
- return x
275
-
276
- def extra_repr(self) -> str:
277
- return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
278
- f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"
279
-
280
- def flops(self):
281
- flops = 0
282
- H, W = self.input_resolution
283
- # norm1
284
- flops += self.dim * H * W
285
- # W-MSA/SW-MSA
286
- nW = H * W / self.window_size / self.window_size
287
- flops += nW * self.attn.flops(self.window_size * self.window_size)
288
- # mlp
289
- flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
290
- # norm2
291
- flops += self.dim * H * W
292
- return flops
293
-
294
-
295
- class PatchMerging(nn.Module):
296
- r""" Patch Merging Layer.
297
- Args:
298
- input_resolution (tuple[int]): Resolution of input feature.
299
- dim (int): Number of input channels.
300
- norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
301
- """
302
-
303
- def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
304
- super().__init__()
305
- self.input_resolution = input_resolution
306
- self.dim = dim
307
- self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
308
- self.norm = norm_layer(4 * dim)
309
-
310
- def forward(self, x):
311
- """
312
- x: B, H*W, C
313
- """
314
- H, W = self.input_resolution
315
- B, L, C = x.shape
316
- assert L == H * W, "input feature has wrong size"
317
- assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
318
-
319
- x = x.view(B, H, W, C)
320
-
321
- x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
322
- x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
323
- x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
324
- x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
325
- x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
326
- x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
327
-
328
- x = self.norm(x)
329
- x = self.reduction(x)
330
-
331
- return x
332
-
333
- def extra_repr(self) -> str:
334
- return f"input_resolution={self.input_resolution}, dim={self.dim}"
335
-
336
- def flops(self):
337
- H, W = self.input_resolution
338
- flops = H * W * self.dim
339
- flops += (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim
340
- return flops
341
-
342
-
343
- class BasicLayer(nn.Module):
344
- """ A basic Swin Transformer layer for one stage.
345
- Args:
346
- dim (int): Number of input channels.
347
- input_resolution (tuple[int]): Input resolution.
348
- depth (int): Number of blocks.
349
- num_heads (int): Number of attention heads.
350
- window_size (int): Local window size.
351
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
352
- qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
353
- qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
354
- drop (float, optional): Dropout rate. Default: 0.0
355
- attn_drop (float, optional): Attention dropout rate. Default: 0.0
356
- drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
357
- norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
358
- downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
359
- use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
360
- """
361
-
362
- def __init__(self, dim, input_resolution, depth, num_heads, window_size,
363
- mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
364
- drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False):
365
-
366
- super().__init__()
367
- self.dim = dim
368
- self.input_resolution = input_resolution
369
- self.depth = depth
370
- self.use_checkpoint = use_checkpoint
371
-
372
- # build blocks
373
- self.blocks = nn.ModuleList([
374
- SwinTransformerBlock(dim=dim, input_resolution=input_resolution,
375
- num_heads=num_heads, window_size=window_size,
376
- shift_size=0 if (i % 2 == 0) else window_size // 2,
377
- mlp_ratio=mlp_ratio,
378
- qkv_bias=qkv_bias, qk_scale=qk_scale,
379
- drop=drop, attn_drop=attn_drop,
380
- drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
381
- norm_layer=norm_layer)
382
- for i in range(depth)])
383
-
384
- # patch merging layer
385
- if downsample is not None:
386
- self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
387
- else:
388
- self.downsample = None
389
-
390
- def forward(self, x, x_size):
391
- for blk in self.blocks:
392
- if self.use_checkpoint:
393
- x = checkpoint.checkpoint(blk, x, x_size)
394
- else:
395
- x = blk(x, x_size)
396
- if self.downsample is not None:
397
- x = self.downsample(x)
398
- return x
399
-
400
- def extra_repr(self) -> str:
401
- return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
402
-
403
- def flops(self):
404
- flops = 0
405
- for blk in self.blocks:
406
- flops += blk.flops()
407
- if self.downsample is not None:
408
- flops += self.downsample.flops()
409
- return flops
410
-
411
-
412
- class RSTB(nn.Module):
413
- """Residual Swin Transformer Block (RSTB).
414
- Args:
415
- dim (int): Number of input channels.
416
- input_resolution (tuple[int]): Input resolution.
417
- depth (int): Number of blocks.
418
- num_heads (int): Number of attention heads.
419
- window_size (int): Local window size.
420
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
421
- qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
422
- qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
423
- drop (float, optional): Dropout rate. Default: 0.0
424
- attn_drop (float, optional): Attention dropout rate. Default: 0.0
425
- drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
426
- norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
427
- downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
428
- use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
429
- img_size: Input image size.
430
- patch_size: Patch size.
431
- resi_connection: The convolutional block before residual connection.
432
- """
433
-
434
- def __init__(self, dim, input_resolution, depth, num_heads, window_size,
435
- mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
436
- drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False,
437
- img_size=224, patch_size=4, resi_connection='1conv'):
438
- super(RSTB, self).__init__()
439
-
440
- self.dim = dim
441
- self.input_resolution = input_resolution
442
-
443
- self.residual_group = BasicLayer(dim=dim,
444
- input_resolution=input_resolution,
445
- depth=depth,
446
- num_heads=num_heads,
447
- window_size=window_size,
448
- mlp_ratio=mlp_ratio,
449
- qkv_bias=qkv_bias, qk_scale=qk_scale,
450
- drop=drop, attn_drop=attn_drop,
451
- drop_path=drop_path,
452
- norm_layer=norm_layer,
453
- downsample=downsample,
454
- use_checkpoint=use_checkpoint)
455
-
456
- if resi_connection == '1conv':
457
- self.conv = nn.Conv2d(dim, dim, 3, 1, 1)
458
- elif resi_connection == '3conv':
459
- # to save parameters and memory
460
- self.conv = nn.Sequential(nn.Conv2d(dim, dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True),
461
- nn.Conv2d(dim // 4, dim // 4, 1, 1, 0),
462
- nn.LeakyReLU(negative_slope=0.2, inplace=True),
463
- nn.Conv2d(dim // 4, dim, 3, 1, 1))
464
-
465
- self.patch_embed = PatchEmbed(
466
- img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim,
467
- norm_layer=None)
468
-
469
- self.patch_unembed = PatchUnEmbed(
470
- img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim,
471
- norm_layer=None)
472
-
473
- def forward(self, x, x_size):
474
- return self.patch_embed(self.conv(self.patch_unembed(self.residual_group(x, x_size), x_size))) + x
475
-
476
- def flops(self):
477
- flops = 0
478
- flops += self.residual_group.flops()
479
- H, W = self.input_resolution
480
- flops += H * W * self.dim * self.dim * 9
481
- flops += self.patch_embed.flops()
482
- flops += self.patch_unembed.flops()
483
-
484
- return flops
485
-
486
-
487
- class PatchEmbed(nn.Module):
488
- r""" Image to Patch Embedding
489
- Args:
490
- img_size (int): Image size. Default: 224.
491
- patch_size (int): Patch token size. Default: 4.
492
- in_chans (int): Number of input image channels. Default: 3.
493
- embed_dim (int): Number of linear projection output channels. Default: 96.
494
- norm_layer (nn.Module, optional): Normalization layer. Default: None
495
- """
496
-
497
- def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
498
- super().__init__()
499
- img_size = to_2tuple(img_size)
500
- patch_size = to_2tuple(patch_size)
501
- patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
502
- self.img_size = img_size
503
- self.patch_size = patch_size
504
- self.patches_resolution = patches_resolution
505
- self.num_patches = patches_resolution[0] * patches_resolution[1]
506
-
507
- self.in_chans = in_chans
508
- self.embed_dim = embed_dim
509
-
510
- if norm_layer is not None:
511
- self.norm = norm_layer(embed_dim)
512
- else:
513
- self.norm = None
514
-
515
- def forward(self, x):
516
- x = x.flatten(2).transpose(1, 2) # B Ph*Pw C
517
- if self.norm is not None:
518
- x = self.norm(x)
519
- return x
520
-
521
- def flops(self):
522
- flops = 0
523
- H, W = self.img_size
524
- if self.norm is not None:
525
- flops += H * W * self.embed_dim
526
- return flops
527
-
528
-
529
- class PatchUnEmbed(nn.Module):
530
- r""" Image to Patch Unembedding
531
- Args:
532
- img_size (int): Image size. Default: 224.
533
- patch_size (int): Patch token size. Default: 4.
534
- in_chans (int): Number of input image channels. Default: 3.
535
- embed_dim (int): Number of linear projection output channels. Default: 96.
536
- norm_layer (nn.Module, optional): Normalization layer. Default: None
537
- """
538
-
539
- def __init__(self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
540
- super().__init__()
541
- img_size = to_2tuple(img_size)
542
- patch_size = to_2tuple(patch_size)
543
- patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
544
- self.img_size = img_size
545
- self.patch_size = patch_size
546
- self.patches_resolution = patches_resolution
547
- self.num_patches = patches_resolution[0] * patches_resolution[1]
548
-
549
- self.in_chans = in_chans
550
- self.embed_dim = embed_dim
551
-
552
- def forward(self, x, x_size):
553
- B, HW, C = x.shape
554
- x = x.transpose(1, 2).view(B, self.embed_dim, x_size[0], x_size[1]) # B Ph*Pw C
555
- return x
556
-
557
- def flops(self):
558
- flops = 0
559
- return flops
560
-
561
-
562
- class Upsample(nn.Sequential):
563
- """Upsample module.
564
- Args:
565
- scale (int): Scale factor. Supported scales: 2^n and 3.
566
- num_feat (int): Channel number of intermediate features.
567
- """
568
-
569
- def __init__(self, scale, num_feat):
570
- m = []
571
- if (scale & (scale - 1)) == 0: # scale = 2^n
572
- for _ in range(int(math.log(scale, 2))):
573
- m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
574
- m.append(nn.PixelShuffle(2))
575
- elif scale == 3:
576
- m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
577
- m.append(nn.PixelShuffle(3))
578
- else:
579
- raise ValueError(f'scale {scale} is not supported. ' 'Supported scales: 2^n and 3.')
580
- super(Upsample, self).__init__(*m)
581
-
582
-
583
- class UpsampleOneStep(nn.Sequential):
584
- """UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle)
585
- Used in lightweight SR to save parameters.
586
- Args:
587
- scale (int): Scale factor. Supported scales: 2^n and 3.
588
- num_feat (int): Channel number of intermediate features.
589
- """
590
-
591
- def __init__(self, scale, num_feat, num_out_ch, input_resolution=None):
592
- self.num_feat = num_feat
593
- self.input_resolution = input_resolution
594
- m = []
595
- m.append(nn.Conv2d(num_feat, (scale ** 2) * num_out_ch, 3, 1, 1))
596
- m.append(nn.PixelShuffle(scale))
597
- super(UpsampleOneStep, self).__init__(*m)
598
-
599
- def flops(self):
600
- H, W = self.input_resolution
601
- flops = H * W * self.num_feat * 3 * 9
602
- return flops
603
-
604
-
605
- class SwinIR(nn.Module):
606
- r""" SwinIR
607
- A PyTorch impl of : `SwinIR: Image Restoration Using Swin Transformer`, based on Swin Transformer.
608
- Args:
609
- img_size (int | tuple(int)): Input image size. Default 64
610
- patch_size (int | tuple(int)): Patch size. Default: 1
611
- in_chans (int): Number of input image channels. Default: 3
612
- embed_dim (int): Patch embedding dimension. Default: 96
613
- depths (tuple(int)): Depth of each Swin Transformer layer.
614
- num_heads (tuple(int)): Number of attention heads in different layers.
615
- window_size (int): Window size. Default: 7
616
- mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
617
- qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
618
- qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
619
- drop_rate (float): Dropout rate. Default: 0
620
- attn_drop_rate (float): Attention dropout rate. Default: 0
621
- drop_path_rate (float): Stochastic depth rate. Default: 0.1
622
- norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
623
- ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
624
- patch_norm (bool): If True, add normalization after patch embedding. Default: True
625
- use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
626
- upscale: Upscale factor. 2/3/4/8 for image SR, 1 for denoising and compress artifact reduction
627
- img_range: Image range. 1. or 255.
628
- upsampler: The reconstruction reconstruction module. 'pixelshuffle'/'pixelshuffledirect'/'nearest+conv'/None
629
- resi_connection: The convolutional block before residual connection. '1conv'/'3conv'
630
- """
631
-
632
- def __init__(self, img_size=64, patch_size=1, in_chans=3,
633
- embed_dim=96, depths=[6, 6, 6, 6], num_heads=[6, 6, 6, 6],
634
- window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None,
635
- drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
636
- norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
637
- use_checkpoint=False, upscale=2, img_range=1., upsampler='', resi_connection='1conv',
638
- **kwargs):
639
- super(SwinIR, self).__init__()
640
- num_in_ch = in_chans
641
- num_out_ch = in_chans
642
- num_feat = 64
643
- self.img_range = img_range
644
- if in_chans == 3:
645
- rgb_mean = (0.4488, 0.4371, 0.4040)
646
- self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
647
- else:
648
- self.mean = torch.zeros(1, 1, 1, 1)
649
- self.upscale = upscale
650
- self.upsampler = upsampler
651
-
652
- #####################################################################################################
653
- ################################### 1, shallow feature extraction ###################################
654
- self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1)
655
-
656
- #####################################################################################################
657
- ################################### 2, deep feature extraction ######################################
658
- self.num_layers = len(depths)
659
- self.embed_dim = embed_dim
660
- self.ape = ape
661
- self.patch_norm = patch_norm
662
- self.num_features = embed_dim
663
- self.mlp_ratio = mlp_ratio
664
-
665
- # split image into non-overlapping patches
666
- self.patch_embed = PatchEmbed(
667
- img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim,
668
- norm_layer=norm_layer if self.patch_norm else None)
669
- num_patches = self.patch_embed.num_patches
670
- patches_resolution = self.patch_embed.patches_resolution
671
- self.patches_resolution = patches_resolution
672
-
673
- # merge non-overlapping patches into image
674
- self.patch_unembed = PatchUnEmbed(
675
- img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim,
676
- norm_layer=norm_layer if self.patch_norm else None)
677
-
678
- # absolute position embedding
679
- if self.ape:
680
- self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
681
- trunc_normal_(self.absolute_pos_embed, std=.02)
682
-
683
- self.pos_drop = nn.Dropout(p=drop_rate)
684
-
685
- # stochastic depth
686
- dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
687
-
688
- # build Residual Swin Transformer blocks (RSTB)
689
- self.layers = nn.ModuleList()
690
- for i_layer in range(self.num_layers):
691
- layer = RSTB(dim=embed_dim,
692
- input_resolution=(patches_resolution[0],
693
- patches_resolution[1]),
694
- depth=depths[i_layer],
695
- num_heads=num_heads[i_layer],
696
- window_size=window_size,
697
- mlp_ratio=self.mlp_ratio,
698
- qkv_bias=qkv_bias, qk_scale=qk_scale,
699
- drop=drop_rate, attn_drop=attn_drop_rate,
700
- drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], # no impact on SR results
701
- norm_layer=norm_layer,
702
- downsample=None,
703
- use_checkpoint=use_checkpoint,
704
- img_size=img_size,
705
- patch_size=patch_size,
706
- resi_connection=resi_connection
707
-
708
- )
709
- self.layers.append(layer)
710
- self.norm = norm_layer(self.num_features)
711
-
712
- # build the last conv layer in deep feature extraction
713
- if resi_connection == '1conv':
714
- self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)
715
- elif resi_connection == '3conv':
716
- # to save parameters and memory
717
- self.conv_after_body = nn.Sequential(nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1),
718
- nn.LeakyReLU(negative_slope=0.2, inplace=True),
719
- nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0),
720
- nn.LeakyReLU(negative_slope=0.2, inplace=True),
721
- nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1))
722
-
723
- #####################################################################################################
724
- ################################ 3, high quality image reconstruction ################################
725
- if self.upsampler == 'pixelshuffle':
726
- # for classical SR
727
- self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
728
- nn.LeakyReLU(inplace=True))
729
- self.upsample = Upsample(upscale, num_feat)
730
- self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
731
- elif self.upsampler == 'pixelshuffledirect':
732
- # for lightweight SR (to save parameters)
733
- self.upsample = UpsampleOneStep(upscale, embed_dim, num_out_ch,
734
- (patches_resolution[0], patches_resolution[1]))
735
- elif self.upsampler == 'nearest+conv':
736
- # for real-world SR (less artifacts)
737
- assert self.upscale == 4, 'only support x4 now.'
738
- self.conv_before_upsample = nn.Sequential(nn.Conv2d(embed_dim, num_feat, 3, 1, 1),
739
- nn.LeakyReLU(inplace=True))
740
- self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
741
- self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
742
- self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1)
743
- self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
744
- self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
745
- else:
746
- # for image denoising and JPEG compression artifact reduction
747
- self.conv_last = nn.Conv2d(embed_dim, num_out_ch, 3, 1, 1)
748
-
749
- self.apply(self._init_weights)
750
-
751
- def _init_weights(self, m):
752
- if isinstance(m, nn.Linear):
753
- trunc_normal_(m.weight, std=.02)
754
- if isinstance(m, nn.Linear) and m.bias is not None:
755
- nn.init.constant_(m.bias, 0)
756
- elif isinstance(m, nn.LayerNorm):
757
- nn.init.constant_(m.bias, 0)
758
- nn.init.constant_(m.weight, 1.0)
759
-
760
- @torch.jit.ignore
761
- def no_weight_decay(self):
762
- return {'absolute_pos_embed'}
763
-
764
- @torch.jit.ignore
765
- def no_weight_decay_keywords(self):
766
- return {'relative_position_bias_table'}
767
-
768
- def forward_features(self, x):
769
- x_size = (x.shape[2], x.shape[3])
770
- x = self.patch_embed(x)
771
- if self.ape:
772
- x = x + self.absolute_pos_embed
773
- x = self.pos_drop(x)
774
-
775
- for layer in self.layers:
776
- x = layer(x, x_size)
777
-
778
- x = self.norm(x) # B L C
779
- x = self.patch_unembed(x, x_size)
780
-
781
- return x
782
-
783
- def forward(self, x):
784
- self.mean = self.mean.type_as(x)
785
- x = (x - self.mean) * self.img_range
786
-
787
- if self.upsampler == 'pixelshuffle':
788
- # for classical SR
789
- x = self.conv_first(x)
790
- x = self.conv_after_body(self.forward_features(x)) + x
791
- x = self.conv_before_upsample(x)
792
- x = self.conv_last(self.upsample(x))
793
- elif self.upsampler == 'pixelshuffledirect':
794
- # for lightweight SR
795
- x = self.conv_first(x)
796
- x = self.conv_after_body(self.forward_features(x)) + x
797
- x = self.upsample(x)
798
- elif self.upsampler == 'nearest+conv':
799
- # for real-world SR
800
- x = self.conv_first(x)
801
- x = self.conv_after_body(self.forward_features(x)) + x
802
- x = self.conv_before_upsample(x)
803
- x = self.lrelu(self.conv_up1(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
804
- x = self.lrelu(self.conv_up2(torch.nn.functional.interpolate(x, scale_factor=2, mode='nearest')))
805
- x = self.conv_last(self.lrelu(self.conv_hr(x)))
806
- else:
807
- # for image denoising and JPEG compression artifact reduction
808
- x_first = self.conv_first(x)
809
- res = self.conv_after_body(self.forward_features(x_first)) + x_first
810
- x = x + self.conv_last(res)
811
-
812
- x = x / self.img_range + self.mean
813
-
814
- return x
815
-
816
- def flops(self):
817
- flops = 0
818
- H, W = self.patches_resolution
819
- flops += H * W * 3 * self.embed_dim * 9
820
- flops += self.patch_embed.flops()
821
- for i, layer in enumerate(self.layers):
822
- flops += layer.flops()
823
- flops += H * W * 3 * self.embed_dim * self.embed_dim
824
- flops += self.upsample.flops()
825
- return flops
826
-
827
-
828
- if __name__ == '__main__':
829
- upscale = 4
830
- window_size = 8
831
- height = (1024 // upscale // window_size + 1) * window_size
832
- width = (720 // upscale // window_size + 1) * window_size
833
- model = SwinIR(upscale=2, img_size=(height, width),
834
- window_size=window_size, img_range=1., depths=[6, 6, 6, 6],
835
- embed_dim=60, num_heads=[6, 6, 6, 6], mlp_ratio=2, upsampler='pixelshuffledirect')
836
- print(model)
837
- print(height, width, model.flops() / 1e9)
838
-
839
- x = torch.randn((1, 3, height, width))
840
- x = model(x)
841
- print(x.shape)