|
import argparse
|
|
import cv2
|
|
import glob
|
|
import numpy as np
|
|
from collections import OrderedDict
|
|
from skimage import img_as_ubyte
|
|
import os
|
|
import torch
|
|
import requests
|
|
from PIL import Image
|
|
import torchvision.transforms.functional as TF
|
|
import torch.nn.functional as F
|
|
|
|
from model.SRMNet import SRMNet
|
|
from utils import util_calculate_psnr_ssim as util
|
|
|
|
|
|
def save_img(filepath, img):
|
|
cv2.imwrite(filepath, cv2.cvtColor(img, cv2.COLOR_RGB2BGR))
|
|
|
|
|
|
def load_checkpoint(model, weights):
|
|
checkpoint = torch.load(weights)
|
|
try:
|
|
model.load_state_dict(checkpoint["state_dict"])
|
|
except:
|
|
state_dict = checkpoint["state_dict"]
|
|
new_state_dict = OrderedDict()
|
|
for k, v in state_dict.items():
|
|
name = k[7:]
|
|
new_state_dict[name] = v
|
|
model.load_state_dict(new_state_dict)
|
|
|
|
|
|
def main():
|
|
parser = argparse.ArgumentParser(description='Demo Image Denoising')
|
|
parser.add_argument('--input_dir', default='test/', type=str, help='Input images')
|
|
parser.add_argument('--result_dir', default='result/', type=str, help='Directory for results')
|
|
parser.add_argument('--weights',
|
|
default='experiments/pretrained_models/AWGN_denoising_SRMNet.pth', type=str,
|
|
help='Path to weights')
|
|
|
|
args = parser.parse_args()
|
|
|
|
inp_dir = args.input_dir
|
|
out_dir = args.result_dir
|
|
|
|
os.makedirs(out_dir, exist_ok=True)
|
|
|
|
files = sorted(glob.glob(os.path.join(inp_dir, '*.PNG')))
|
|
|
|
if len(files) == 0:
|
|
raise Exception(f"No files found at {inp_dir}")
|
|
|
|
|
|
model = SRMNet()
|
|
model.cuda()
|
|
|
|
load_checkpoint(model, args.weights)
|
|
model.eval()
|
|
|
|
mul = 16
|
|
for file_ in files:
|
|
img = Image.open(file_).convert('RGB')
|
|
input_ = TF.to_tensor(img).unsqueeze(0).cuda()
|
|
|
|
|
|
h, w = input_.shape[2], input_.shape[3]
|
|
H, W = ((h + mul) // mul) * mul, ((w + mul) // mul) * mul
|
|
padh = H - h if h % mul != 0 else 0
|
|
padw = W - w if w % mul != 0 else 0
|
|
input_ = F.pad(input_, (0, padw, 0, padh), 'reflect')
|
|
with torch.no_grad():
|
|
restored = model(input_)
|
|
|
|
restored = torch.clamp(restored, 0, 1)
|
|
restored = restored[:, :, :h, :w]
|
|
restored = restored.permute(0, 2, 3, 1).cpu().detach().numpy()
|
|
restored = img_as_ubyte(restored[0])
|
|
|
|
f = os.path.splitext(os.path.split(file_)[-1])[0]
|
|
save_img((os.path.join(out_dir, f + '.png')), restored)
|
|
|
|
|
|
def setup(args):
|
|
save_dir = 'result/'
|
|
folder = 'test/'
|
|
|
|
return folder, save_dir
|
|
|
|
if __name__ == '__main__':
|
|
main() |