Spaces:
Runtime error
Runtime error
| import argparse | |
| import cv2 | |
| import glob | |
| import numpy as np | |
| from collections import OrderedDict | |
| from skimage import img_as_ubyte | |
| import os | |
| import torch | |
| import requests | |
| from PIL import Image | |
| import torchvision.transforms.functional as TF | |
| import torch.nn.functional as F | |
| from natsort import natsorted | |
| from model.SRMNet import SRMNet | |
| def clean_folder(folder): | |
| for filename in os.listdir(folder): | |
| file_path = os.path.join(folder, filename) | |
| try: | |
| if os.path.isfile(file_path) or os.path.islink(file_path): | |
| os.unlink(file_path) | |
| elif os.path.isdir(file_path): | |
| shutil.rmtree(file_path) | |
| except Exception as e: | |
| print('Failed to delete %s. Reason: %s' % (file_path, e)) | |
| def save_img(filepath, img): | |
| cv2.imwrite(filepath, cv2.cvtColor(img, cv2.COLOR_RGB2BGR)) | |
| def load_checkpoint(model, weights): | |
| checkpoint = torch.load(weights, map_location=torch.device('cpu')) | |
| try: | |
| model.load_state_dict(checkpoint["state_dict"]) | |
| except: | |
| state_dict = checkpoint["state_dict"] | |
| new_state_dict = OrderedDict() | |
| for k, v in state_dict.items(): | |
| name = k[7:] # remove `module.` | |
| new_state_dict[name] = v | |
| model.load_state_dict(new_state_dict) | |
| def main(): | |
| parser = argparse.ArgumentParser(description='Demo Image Denoising') | |
| parser.add_argument('--input_dir', default='test', type=str, help='Input images') | |
| parser.add_argument('--result_dir', default='result', type=str, help='Directory for results') | |
| parser.add_argument('--weights', | |
| default='experiments/pretrained_models/AWGN_denoising_SRMNet.pth', type=str, | |
| help='Path to weights') | |
| args = parser.parse_args() | |
| inp_dir = args.input_dir | |
| out_dir = args.result_dir | |
| os.makedirs(out_dir, exist_ok=True) | |
| files = natsorted(glob.glob(os.path.join(inp_dir, '*'))) | |
| if len(files) == 0: | |
| raise Exception(f"No files found at {inp_dir}") | |
| device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
| # Load corresponding models architecture and weights | |
| model = SRMNet() | |
| model = model.to(device) | |
| model.eval() | |
| load_checkpoint(model, args.weights) | |
| mul = 16 | |
| for file_ in files: | |
| img = Image.open(file_).convert('RGB') | |
| input_ = TF.to_tensor(img).unsqueeze(0).to(device) | |
| # Pad the input if not_multiple_of 8 | |
| h, w = input_.shape[2], input_.shape[3] | |
| H, W = ((h + mul) // mul) * mul, ((w + mul) // mul) * mul | |
| padh = H - h if h % mul != 0 else 0 | |
| padw = W - w if w % mul != 0 else 0 | |
| input_ = F.pad(input_, (0, padw, 0, padh), 'reflect') | |
| with torch.no_grad(): | |
| restored = model(input_) | |
| restored = torch.clamp(restored, 0, 1) | |
| restored = restored[:, :, :h, :w] | |
| restored = restored.permute(0, 2, 3, 1).cpu().detach().numpy() | |
| restored = img_as_ubyte(restored[0]) | |
| f = os.path.splitext(os.path.split(file_)[-1])[0] | |
| save_img((os.path.join(out_dir, f + '.png')), restored) | |
| clean_folder(inp_dir) | |
| if __name__ == '__main__': | |
| main() |