|
import torch |
|
import torch.nn as nn |
|
|
|
def dwt_init(x): |
|
x01 = x[:, :, 0::2, :] / 2 |
|
x02 = x[:, :, 1::2, :] / 2 |
|
x1 = x01[:, :, :, 0::2] |
|
x2 = x02[:, :, :, 0::2] |
|
x3 = x01[:, :, :, 1::2] |
|
x4 = x02[:, :, :, 1::2] |
|
x_LL = x1 + x2 + x3 + x4 |
|
x_HL = -x1 - x2 + x3 + x4 |
|
x_LH = -x1 + x2 - x3 + x4 |
|
x_HH = x1 - x2 - x3 + x4 |
|
|
|
return torch.cat((x_LL, x_HL, x_LH, x_HH), 1) |
|
|
|
def iwt_init(x): |
|
r = 2 |
|
in_batch, in_channel, in_height, in_width = x.size() |
|
out_batch, out_channel, out_height, out_width = in_batch, int(in_channel / (r ** 2)), r * in_height, r * in_width |
|
x1 = x[:, 0:out_channel, :, :] / 2 |
|
x2 = x[:, out_channel:out_channel * 2, :, :] / 2 |
|
x3 = x[:, out_channel * 2:out_channel * 3, :, :] / 2 |
|
x4 = x[:, out_channel * 3:out_channel * 4, :, :] / 2 |
|
h = torch.zeros([out_batch, out_channel, out_height, out_width]).cuda() |
|
|
|
h[:, :, 0::2, 0::2] = x1 - x2 - x3 + x4 |
|
h[:, :, 1::2, 0::2] = x1 - x2 + x3 - x4 |
|
h[:, :, 0::2, 1::2] = x1 + x2 - x3 - x4 |
|
h[:, :, 1::2, 1::2] = x1 + x2 + x3 + x4 |
|
|
|
return h |
|
|
|
|
|
class DWT(nn.Module): |
|
def __init__(self): |
|
super(DWT, self).__init__() |
|
self.requires_grad = True |
|
|
|
def forward(self, x): |
|
return dwt_init(x) |
|
|
|
|
|
class IWT(nn.Module): |
|
def __init__(self): |
|
super(IWT, self).__init__() |
|
self.requires_grad = True |
|
|
|
def forward(self, x): |
|
return iwt_init(x) |
|
|
|
|
|
|