Spaces:
Running
Running
import os | |
import gradio as gr | |
from PIL import Image | |
import torch | |
os.system( | |
'wget https://github.com/FanChiMao/CMFNet/releases/download/v0.0/deblur_GoPro_CMFNet.pth -P experiments/pretrained_models') | |
def inference(img): | |
os.system('mkdir test') | |
basewidth = 512 | |
wpercent = (basewidth / float(img.size[0])) | |
hsize = int((float(img.size[1]) * float(wpercent))) | |
img = img.resize((basewidth, hsize), Image.BILINEAR) | |
img.save("test/1.png", "PNG") | |
os.system( | |
'python main_test_CMFNet.py --input_dir test --weights experiments/pretrained_models/deblur_GoPro_CMFNet.pth') | |
return 'results/1.png' | |
title = "Compound Multi-branch Feature Fusion (Deblur)" | |
description = "Gradio demo for CMFNet. CMFNet achieves state-of-the-art performance on six tasks: image super-resolution (including classical, lightweight and real-world image super-resolution), image denoising (including grayscale and color image denoising) and JPEG compression artifact reduction. See the paper and project page for detailed results below. Here, we provide a demo for real-world image SR.To use it, simply upload your image, or click one of the examples to load them." | |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2108.10257' target='_blank'>SwinIR: Image Restoration Using Swin Transformer</a> | <a href='https://github.com/JingyunLiang/SwinIR' target='_blank'>Github Repo</a></p>" | |
examples = [['Haze.png']] | |
gr.Interface( | |
inference, | |
[gr.inputs.Image(type="pil", label="Input")], | |
gr.outputs.Image(type="file", label="Output"), | |
title=title, | |
description=description, | |
article=article, | |
examples=examples | |
).launch(debug=True) |