Change app.py
Browse filesSigned-off-by: Aadhitya A <aadhitya864@gmail.com>
app.py
CHANGED
@@ -74,340 +74,6 @@ ACCELERATOR = "cpu"
|
|
74 |
w = 7
|
75 |
prax = [0 for x in range(w)]
|
76 |
|
77 |
-
# %%
|
78 |
-
# Objective function for Optuna (CNN-LSTM)
|
79 |
-
def objective(trial, X_train, y_train, X_test, y_test):
|
80 |
-
model = tf.keras.Sequential()
|
81 |
-
|
82 |
-
# Creating the Neural Network model here...
|
83 |
-
# CNN layers
|
84 |
-
model.add(Conv1D(filters=64, kernel_size=3, activation='relu', input_shape=(X_train.shape[1], 1)))
|
85 |
-
# model.add(Dense(5, kernel_regularizer=L2(0.01)))
|
86 |
-
|
87 |
-
# LSTM layers
|
88 |
-
model.add(Bidirectional(LSTM(trial.suggest_int("lstm_units_1", 32, 256), return_sequences=True)))
|
89 |
-
model.add(Dropout(trial.suggest_float("dropout_1", 0.1, 0.5)))
|
90 |
-
model.add(Bidirectional(LSTM(trial.suggest_int("lstm_units_2", 32, 256), return_sequences=False)))
|
91 |
-
model.add(Dropout(trial.suggest_float("dropout_2", 0.1, 0.5)))
|
92 |
-
|
93 |
-
#Final layers
|
94 |
-
model.add(Dense(1, activation='relu'))
|
95 |
-
model.compile(optimizer='adam', loss='mse', metrics=['mse'])
|
96 |
-
|
97 |
-
# Train the model
|
98 |
-
pruning_callback = TFKerasPruningCallback(trial, "val_loss")
|
99 |
-
history = model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=15, batch_size=32, verbose=0, callbacks=[pruning_callback])
|
100 |
-
|
101 |
-
# Evaluate the model
|
102 |
-
loss = model.evaluate(X_test, y_test, verbose=0)[0]
|
103 |
-
|
104 |
-
return loss
|
105 |
-
|
106 |
-
# %%
|
107 |
-
# Function to train the model (CNN-LSTM)
|
108 |
-
def modelCNNLSTM(csv_file, prax):
|
109 |
-
# Read the data
|
110 |
-
df = csv_file
|
111 |
-
#df = df['Date/Time'].values.astype("float64")
|
112 |
-
temp_data = df.iloc[0:len(df)-100, 1:21]
|
113 |
-
trek = df.iloc[len(df)-100:,1:21]
|
114 |
-
#print(temp_data)
|
115 |
-
data = temp_data
|
116 |
-
sc = MinMaxScaler()
|
117 |
-
# Split the data into training and testing sets
|
118 |
-
train_size = int(len(data) * 0.8)
|
119 |
-
train_data, test_data = data[:train_size], data[train_size:]
|
120 |
-
# Separate the input features and target variable
|
121 |
-
X_train, y_train = train_data, train_data['Close']
|
122 |
-
X_test, y_test = test_data, test_data['Close']
|
123 |
-
|
124 |
-
X_train = X_train[0:len(X_train)-1]
|
125 |
-
y_train = y_train[1:len(y_train)]
|
126 |
-
X_test = X_test[0:len(X_test)-1]
|
127 |
-
y_test = y_test[1:len(y_test)]
|
128 |
-
|
129 |
-
Xt = X_train
|
130 |
-
Xts = X_test
|
131 |
-
Yt = y_train
|
132 |
-
Yts = y_test
|
133 |
-
|
134 |
-
y_train = y_train.values.reshape(-1,1)
|
135 |
-
y_test = y_test.values.reshape(-1,1)
|
136 |
-
|
137 |
-
X_train = sc.fit_transform(X_train)
|
138 |
-
y_train = sc.fit_transform(y_train)
|
139 |
-
X_test = sc.fit_transform(X_test)
|
140 |
-
y_test = sc.fit_transform(y_test)
|
141 |
-
|
142 |
-
x_tr=pd.DataFrame(X_train, index = Xt.index, columns = Xt.columns)
|
143 |
-
y_tr=pd.DataFrame(y_train, index = Yt.index)
|
144 |
-
x_te=pd.DataFrame(X_test, index = Xts.index, columns = Xts.columns)
|
145 |
-
y_te=pd.DataFrame(y_test, index = Yts.index)
|
146 |
-
|
147 |
-
# Reshape the data for the CNN-LSTM model
|
148 |
-
X_train = X_train.reshape((X_train.shape[0], X_train.shape[1], 1))
|
149 |
-
X_test = X_test.reshape((X_test.shape[0], X_test.shape[1], 1))
|
150 |
-
|
151 |
-
study = optuna.create_study(direction="minimize", pruner=optuna.pruners.MedianPruner(n_min_trials=4, n_startup_trials=4))
|
152 |
-
fn = lambda trial: objective(trial, X_train=X_train, X_test=X_test, y_train=y_train, y_test=y_test)
|
153 |
-
study.optimize(fn, n_trials=5)
|
154 |
-
|
155 |
-
best_params = study.best_params
|
156 |
-
#print(f"Best params: {best_params}")
|
157 |
-
|
158 |
-
model = tf.keras.Sequential()
|
159 |
-
|
160 |
-
# Creating the Neural Network model here...
|
161 |
-
# CNN layers
|
162 |
-
model.add(Conv1D(filters=64, kernel_size=3, activation='relu', input_shape=(X_train.shape[1], 1)))
|
163 |
-
# model.add(Dense(5, kernel_regularizer=L2(0.01)))
|
164 |
-
|
165 |
-
# LSTM layers
|
166 |
-
model.add(Bidirectional(LSTM(best_params["lstm_units_1"], return_sequences=True)))
|
167 |
-
model.add(Dropout(best_params["dropout_1"]))
|
168 |
-
model.add(Bidirectional(LSTM(best_params["lstm_units_2"], return_sequences=False)))
|
169 |
-
model.add(Dropout(best_params["dropout_2"]))
|
170 |
-
|
171 |
-
#Final layers
|
172 |
-
model.add(Dense(1, activation='relu'))
|
173 |
-
model.compile(optimizer='adam', loss='mse', metrics=['mse'])
|
174 |
-
|
175 |
-
# Train the model
|
176 |
-
history = model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=10, batch_size=32, verbose=0)
|
177 |
-
|
178 |
-
# Evaluate the model
|
179 |
-
loss = model.evaluate(X_test, y_test, verbose=0)[0]
|
180 |
-
|
181 |
-
print(f"Final loss (without KFold): {loss}")
|
182 |
-
|
183 |
-
kfold = KFold(n_splits=10, shuffle=True)
|
184 |
-
|
185 |
-
inputs = np.concatenate((X_train, X_test), axis=0)
|
186 |
-
targets = np.concatenate((y_train, y_test), axis=0)
|
187 |
-
acc_per_fold = []
|
188 |
-
loss_per_fold = []
|
189 |
-
xgb_res = []
|
190 |
-
num_epochs = 10
|
191 |
-
batch_size = 32
|
192 |
-
|
193 |
-
fold_no = 1
|
194 |
-
print('------------------------------------------------------------------------')
|
195 |
-
print("Training for 10 folds... Standby")
|
196 |
-
for train, test in kfold.split(inputs, targets):
|
197 |
-
#print('------------------------------------------------------------------------')
|
198 |
-
#print(f'Training for fold {fold_no} ...')
|
199 |
-
history = model.fit(inputs[train], targets[train],
|
200 |
-
batch_size=32,
|
201 |
-
epochs=15,
|
202 |
-
verbose=0)
|
203 |
-
|
204 |
-
scores = model.evaluate(inputs[test], targets[test], verbose=0)
|
205 |
-
#print(f'Score for fold {fold_no}: {model.metrics_names[0]} of {scores[0]}; {model.metrics_names[1]} of {scores[1]*100}%')
|
206 |
-
acc_per_fold.append(scores[1] * 100)
|
207 |
-
loss_per_fold.append(scores[0])
|
208 |
-
fold_no = fold_no + 1
|
209 |
-
|
210 |
-
|
211 |
-
print('------------------------------------------------------------------------')
|
212 |
-
#print('Score per fold')
|
213 |
-
#for i in range(0, len(acc_per_fold)):
|
214 |
-
# print('------------------------------------------------------------------------')
|
215 |
-
# print(f'> Fold {i+1} - Loss: {loss_per_fold[i]} - Loss%: {acc_per_fold[i]}%')
|
216 |
-
#print('------------------------------------------------------------------------')
|
217 |
-
#print('Average scores for all folds:')
|
218 |
-
#print(f'> Possible Loss %: {np.mean(acc_per_fold)} (+- {np.std(acc_per_fold)})')
|
219 |
-
#print(f'> Loss: {np.mean(loss_per_fold)}')
|
220 |
-
#print('------------------------------------------------------------------------')
|
221 |
-
|
222 |
-
trek = df.iloc[0:len(df), 1:21]
|
223 |
-
Y = trek[0:len(trek)]
|
224 |
-
YP = trek[1:len(trek)]
|
225 |
-
Y1 = Y['Close']
|
226 |
-
Y2 = YP['Close']
|
227 |
-
Yx = pd.DataFrame(YP, index=YP.index, columns=YP.columns)
|
228 |
-
#X = sc.fit_transform(X.reshape(-1,22))
|
229 |
-
Y = np.array(Y)
|
230 |
-
Y1 = np.array(Y1)
|
231 |
-
Y = sc.fit_transform(Y)
|
232 |
-
Y1 = Y1.reshape(-1,1)
|
233 |
-
Y1 = sc.fit_transform(Y1)
|
234 |
-
|
235 |
-
train_X = Y.reshape(Y.shape[0],Y.shape[1],1)
|
236 |
-
#Y = Y.reshape(-1,1)
|
237 |
-
pred = model.predict(train_X, verbose=0)
|
238 |
-
pred = np.array(pred).reshape(-1,1)
|
239 |
-
var2 = max_error(pred.reshape(-1,1), Y1)
|
240 |
-
print('Max Error: %f' % var2)
|
241 |
-
prax[5] = float(var2)
|
242 |
-
pred = sc.inverse_transform(pred)
|
243 |
-
|
244 |
-
print(pred[-2], pred[-1])
|
245 |
-
prax[3] = pred[-2]
|
246 |
-
prax[4] = pred[-1]
|
247 |
-
if(pred[-1]-pred[-2]>0):
|
248 |
-
prax[6] = 1
|
249 |
-
elif(pred[-1]-pred[-2]==0):
|
250 |
-
prax[6] = 0
|
251 |
-
else:
|
252 |
-
prax[6] = -1
|
253 |
-
|
254 |
-
# %%
|
255 |
-
# Function to train the model (CNN-LSTM)
|
256 |
-
def modelCNNLSTM_OpenGap(csv_file, prax):
|
257 |
-
# Read the data
|
258 |
-
df = csv_file
|
259 |
-
datLength = len(df)
|
260 |
-
df['O-C'] = 0
|
261 |
-
for i in range(datLength):
|
262 |
-
if i == 0:
|
263 |
-
df['O-C'][i] = 0
|
264 |
-
continue
|
265 |
-
else:
|
266 |
-
df['O-C'][i] = df['Open'][i] - df['Close'][i-1]
|
267 |
-
temp_data = df.iloc[0:datLength-100, 1:22]
|
268 |
-
trek = df.iloc[datLength-100:,1:22]
|
269 |
-
#print(temp_data)
|
270 |
-
data = temp_data
|
271 |
-
#data = data.values.astype("float64")
|
272 |
-
sc = MinMaxScaler()
|
273 |
-
# Split the data into training and testing sets
|
274 |
-
train_size = int(len(data) * 0.8)
|
275 |
-
train_data, test_data = data[:train_size], data[train_size:]
|
276 |
-
|
277 |
-
# Separate the input features and target variable
|
278 |
-
X_train, y_train = train_data, train_data['Close']
|
279 |
-
X_test, y_test = test_data, test_data['Close']
|
280 |
-
|
281 |
-
X_train = X_train[0:len(X_train)-1]
|
282 |
-
y_train = y_train[1:len(y_train)]
|
283 |
-
X_test = X_test[0:len(X_test)-1]
|
284 |
-
y_test = y_test[1:len(y_test)]
|
285 |
-
|
286 |
-
Xt = X_train
|
287 |
-
Xts = X_test
|
288 |
-
Yt = y_train
|
289 |
-
Yts = y_test
|
290 |
-
|
291 |
-
y_train = y_train.values.reshape(-1,1)
|
292 |
-
y_test = y_test.values.reshape(-1,1)
|
293 |
-
|
294 |
-
X_train = sc.fit_transform(X_train)
|
295 |
-
y_train = sc.fit_transform(y_train)
|
296 |
-
X_test = sc.fit_transform(X_test)
|
297 |
-
y_test = sc.fit_transform(y_test)
|
298 |
-
|
299 |
-
x_tr=pd.DataFrame(X_train, index = Xt.index, columns = Xt.columns)
|
300 |
-
y_tr=pd.DataFrame(y_train, index = Yt.index)
|
301 |
-
x_te=pd.DataFrame(X_test, index = Xts.index, columns = Xts.columns)
|
302 |
-
y_te=pd.DataFrame(y_test, index = Yts.index)
|
303 |
-
|
304 |
-
# Reshape the data for the CNN-LSTM model
|
305 |
-
X_train = X_train.reshape((X_train.shape[0], X_train.shape[1], 1))
|
306 |
-
X_test = X_test.reshape((X_test.shape[0], X_test.shape[1], 1))
|
307 |
-
|
308 |
-
study = optuna.create_study(direction="minimize", pruner=optuna.pruners.MedianPruner(n_min_trials=2, n_startup_trials=2))
|
309 |
-
fn = lambda trial: objective(trial, X_train=X_train, X_test=X_test, y_train=y_train, y_test=y_test)
|
310 |
-
study.optimize(fn, n_trials=5)
|
311 |
-
|
312 |
-
best_params = study.best_params
|
313 |
-
#print(f"Best params: {best_params}")
|
314 |
-
|
315 |
-
model = tf.keras.Sequential()
|
316 |
-
|
317 |
-
# Creating the Neural Network model here...
|
318 |
-
# CNN layers
|
319 |
-
model.add(Conv1D(filters=64, kernel_size=3, activation='relu', input_shape=(X_train.shape[1], 1)))
|
320 |
-
# model.add(Dense(5, kernel_regularizer=L2(0.01)))
|
321 |
-
|
322 |
-
# LSTM layers
|
323 |
-
model.add(Bidirectional(LSTM(best_params["lstm_units_1"], return_sequences=True)))
|
324 |
-
model.add(Dropout(best_params["dropout_1"]))
|
325 |
-
model.add(Bidirectional(LSTM(best_params["lstm_units_2"], return_sequences=False)))
|
326 |
-
model.add(Dropout(best_params["dropout_2"]))
|
327 |
-
|
328 |
-
#Final layers
|
329 |
-
model.add(Dense(1, activation='relu'))
|
330 |
-
model.compile(optimizer='adam', loss='mse', metrics=['mse'])
|
331 |
-
|
332 |
-
# Train the model
|
333 |
-
history = model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=10, batch_size=32, verbose=0)
|
334 |
-
|
335 |
-
# Evaluate the model
|
336 |
-
loss = model.evaluate(X_test, y_test, verbose=0)[0]
|
337 |
-
|
338 |
-
print(f"Final loss (without KFold): {loss}")
|
339 |
-
|
340 |
-
kfold = KFold(n_splits=10, shuffle=True)
|
341 |
-
|
342 |
-
inputs = np.concatenate((X_train, X_test), axis=0)
|
343 |
-
targets = np.concatenate((y_train, y_test), axis=0)
|
344 |
-
acc_per_fold = []
|
345 |
-
loss_per_fold = []
|
346 |
-
xgb_res = []
|
347 |
-
num_epochs = 10
|
348 |
-
batch_size = 32
|
349 |
-
|
350 |
-
fold_no = 1
|
351 |
-
print('------------------------------------------------------------------------')
|
352 |
-
print("Training for 10 folds... Standby")
|
353 |
-
for train, test in kfold.split(inputs, targets):
|
354 |
-
#print('------------------------------------------------------------------------')
|
355 |
-
#print(f'Training for fold {fold_no} ...')
|
356 |
-
history = model.fit(inputs[train], targets[train],
|
357 |
-
batch_size=32,
|
358 |
-
epochs=15,
|
359 |
-
verbose=0)
|
360 |
-
|
361 |
-
scores = model.evaluate(inputs[test], targets[test], verbose=0)
|
362 |
-
#print(f'Score for fold {fold_no}: {model.metrics_names[0]} of {scores[0]}; {model.metrics_names[1]} of {scores[1]*100}%')
|
363 |
-
acc_per_fold.append(scores[1] * 100)
|
364 |
-
loss_per_fold.append(scores[0])
|
365 |
-
fold_no = fold_no + 1
|
366 |
-
|
367 |
-
|
368 |
-
print('------------------------------------------------------------------------')
|
369 |
-
#print('Score per fold')
|
370 |
-
#for i in range(0, len(acc_per_fold)):
|
371 |
-
# print('------------------------------------------------------------------------')
|
372 |
-
# print(f'> Fold {i+1} - Loss: {loss_per_fold[i]} - Loss%: {acc_per_fold[i]}%')
|
373 |
-
#print('------------------------------------------------------------------------')
|
374 |
-
#print('Average scores for all folds:')
|
375 |
-
#print(f'> Possible Loss %: {np.mean(acc_per_fold)} (+- {np.std(acc_per_fold)})')
|
376 |
-
#print(f'> Loss: {np.mean(loss_per_fold)}')
|
377 |
-
#print('------------------------------------------------------------------------')
|
378 |
-
|
379 |
-
trek = df.iloc[0:len(df), 1:22]
|
380 |
-
Y = trek[0:len(trek)]
|
381 |
-
YP = trek[1:len(trek)]
|
382 |
-
Y1 = Y['Close']
|
383 |
-
Y2 = YP['Close']
|
384 |
-
Yx = pd.DataFrame(YP, index=YP.index, columns=YP.columns)
|
385 |
-
#X = sc.fit_transform(X.reshape(-1,22))
|
386 |
-
Y = np.array(Y)
|
387 |
-
Y1 = np.array(Y1)
|
388 |
-
Y = sc.fit_transform(Y)
|
389 |
-
Y1 = Y1.reshape(-1,1)
|
390 |
-
Y1 = sc.fit_transform(Y1)
|
391 |
-
|
392 |
-
train_X = Y.reshape(Y.shape[0],Y.shape[1],1)
|
393 |
-
#Y = Y.reshape(-1,1)
|
394 |
-
pred = model.predict(train_X, verbose=0)
|
395 |
-
pred = np.array(pred).reshape(-1,1)
|
396 |
-
var2 = max_error(pred.reshape(-1,1), Y1)
|
397 |
-
print('Max Error: %f' % var2)
|
398 |
-
prax[5] = float(var2)
|
399 |
-
pred = sc.inverse_transform(pred)
|
400 |
-
|
401 |
-
print(pred[-2], pred[-1])
|
402 |
-
prax[3] = pred[-2]
|
403 |
-
prax[4] = pred[-1]
|
404 |
-
if(pred[-1]-pred[-2]>0):
|
405 |
-
prax[6] = 1
|
406 |
-
elif(pred[-1]-pred[-2]==0):
|
407 |
-
prax[6] = 0
|
408 |
-
else:
|
409 |
-
prax[6] = -1
|
410 |
-
|
411 |
# %%
|
412 |
# Function to train the model (TFT)
|
413 |
def modelTFT(csv_file, prax):
|
@@ -909,14 +575,6 @@ def main(files):
|
|
909 |
modelTFT_OpenGap(df, prax)
|
910 |
prax[2] = "TFT_OpenGap"
|
911 |
generate_csv(prax)
|
912 |
-
#df.set_index('Date/Time', inplace=True)
|
913 |
-
#df = df.drop(['Date/Time'], axis=1)
|
914 |
-
#modelCNNLSTM(df, prax)
|
915 |
-
#prax[2] = "CNNLSTM"
|
916 |
-
#generate_csv(prax)
|
917 |
-
#modelCNNLSTM_OpenGap(df, prax)
|
918 |
-
#prax[2] = "CNNLSTM_OpenGap"
|
919 |
-
#generate_csv(prax)
|
920 |
# Generate blank line
|
921 |
prax=["","","","","","",""]
|
922 |
generate_csv(prax)
|
@@ -925,7 +583,7 @@ def main(files):
|
|
925 |
today = date.today().strftime("%Y_%m_%d")
|
926 |
return f"result_{today}.csv"
|
927 |
|
928 |
-
gradioApp = gr.Interface(fn=main, inputs=gr.File(file_count="multiple"
|
929 |
|
930 |
if __name__ == "__main__":
|
931 |
# Calling main function
|
|
|
74 |
w = 7
|
75 |
prax = [0 for x in range(w)]
|
76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
# %%
|
78 |
# Function to train the model (TFT)
|
79 |
def modelTFT(csv_file, prax):
|
|
|
575 |
modelTFT_OpenGap(df, prax)
|
576 |
prax[2] = "TFT_OpenGap"
|
577 |
generate_csv(prax)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
578 |
# Generate blank line
|
579 |
prax=["","","","","","",""]
|
580 |
generate_csv(prax)
|
|
|
583 |
today = date.today().strftime("%Y_%m_%d")
|
584 |
return f"result_{today}.csv"
|
585 |
|
586 |
+
gradioApp = gr.Interface(fn=main, inputs=gr.File(file_count="multiple"), outputs="file")
|
587 |
|
588 |
if __name__ == "__main__":
|
589 |
# Calling main function
|