404Brain-Not-Found-yeah
commited on
Upload train_model.py
Browse files- train_model.py +161 -0
train_model.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import librosa
|
4 |
+
import pandas as pd
|
5 |
+
from sklearn.model_selection import train_test_split, cross_val_score
|
6 |
+
from sklearn.ensemble import RandomForestClassifier
|
7 |
+
from sklearn.preprocessing import StandardScaler
|
8 |
+
import joblib
|
9 |
+
import warnings
|
10 |
+
import soundfile as sf
|
11 |
+
import logging
|
12 |
+
import traceback
|
13 |
+
import sys
|
14 |
+
|
15 |
+
# 设置更详细的日志记录
|
16 |
+
logging.basicConfig(
|
17 |
+
level=logging.DEBUG,
|
18 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
19 |
+
handlers=[
|
20 |
+
logging.StreamHandler(sys.stdout),
|
21 |
+
logging.FileHandler('training.log')
|
22 |
+
]
|
23 |
+
)
|
24 |
+
logger = logging.getLogger(__name__)
|
25 |
+
|
26 |
+
warnings.filterwarnings('ignore')
|
27 |
+
|
28 |
+
def extract_features(file_path):
|
29 |
+
"""Extract audio features from a file."""
|
30 |
+
try:
|
31 |
+
logger.info(f"Starting feature extraction for: {file_path}")
|
32 |
+
|
33 |
+
# Verify file exists
|
34 |
+
if not os.path.exists(file_path):
|
35 |
+
logger.error(f"File does not exist: {file_path}")
|
36 |
+
return None
|
37 |
+
|
38 |
+
# Verify file format
|
39 |
+
try:
|
40 |
+
with sf.SoundFile(file_path) as sf_file:
|
41 |
+
logger.info(f"Audio file info: {sf_file.samplerate}Hz, {sf_file.channels} channels")
|
42 |
+
except Exception as e:
|
43 |
+
logger.error(f"Error reading audio file with soundfile: {str(e)}\n{traceback.format_exc()}")
|
44 |
+
return None
|
45 |
+
|
46 |
+
# Load audio file with error handling
|
47 |
+
try:
|
48 |
+
logger.info("Loading audio file...")
|
49 |
+
y, sr = librosa.load(file_path, duration=30, sr=None)
|
50 |
+
if len(y) == 0:
|
51 |
+
logger.error("Audio file is empty")
|
52 |
+
return None
|
53 |
+
logger.info(f"Successfully loaded audio: {len(y)} samples, {sr}Hz sample rate")
|
54 |
+
except Exception as e:
|
55 |
+
logger.error(f"Error loading audio: {str(e)}\n{traceback.format_exc()}")
|
56 |
+
return None
|
57 |
+
|
58 |
+
# Ensure minimum duration
|
59 |
+
duration = len(y) / sr
|
60 |
+
logger.info(f"Audio duration: {duration:.2f} seconds")
|
61 |
+
if duration < 1.0:
|
62 |
+
logger.error("Audio file is too short (less than 1 second)")
|
63 |
+
return None
|
64 |
+
|
65 |
+
features_dict = {}
|
66 |
+
|
67 |
+
try:
|
68 |
+
# 1. MFCC (13 features x 2 = 26)
|
69 |
+
logger.info("Extracting MFCC features...")
|
70 |
+
mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13)
|
71 |
+
features_dict['mfccs_mean'] = np.mean(mfccs, axis=1)
|
72 |
+
features_dict['mfccs_var'] = np.var(mfccs, axis=1)
|
73 |
+
logger.info(f"MFCC features shape: {mfccs.shape}")
|
74 |
+
except Exception as e:
|
75 |
+
logger.error(f"Error extracting MFCC: {str(e)}\n{traceback.format_exc()}")
|
76 |
+
return None
|
77 |
+
|
78 |
+
try:
|
79 |
+
# 2. Chroma Features
|
80 |
+
logger.info("Extracting chroma features...")
|
81 |
+
chroma = librosa.feature.chroma_stft(y=y, sr=sr)
|
82 |
+
features_dict['chroma'] = np.mean(chroma, axis=1)
|
83 |
+
logger.info(f"Chroma features shape: {chroma.shape}")
|
84 |
+
except Exception as e:
|
85 |
+
logger.error(f"Error extracting chroma features: {str(e)}\n{traceback.format_exc()}")
|
86 |
+
return None
|
87 |
+
|
88 |
+
# Combine all features
|
89 |
+
try:
|
90 |
+
logger.info("Combining features...")
|
91 |
+
features = np.concatenate([
|
92 |
+
features_dict['mfccs_mean'],
|
93 |
+
features_dict['mfccs_var'],
|
94 |
+
features_dict['chroma']
|
95 |
+
])
|
96 |
+
logger.info(f"Final feature vector shape: {features.shape}")
|
97 |
+
return features
|
98 |
+
except Exception as e:
|
99 |
+
logger.error(f"Error combining features: {str(e)}\n{traceback.format_exc()}")
|
100 |
+
return None
|
101 |
+
|
102 |
+
except Exception as e:
|
103 |
+
logger.error(f"Unexpected error in feature extraction: {str(e)}\n{traceback.format_exc()}")
|
104 |
+
return None
|
105 |
+
|
106 |
+
def prepare_dataset():
|
107 |
+
"""Prepare dataset from healing and non-healing music folders."""
|
108 |
+
# 直接使用合成数据集
|
109 |
+
print("Using synthetic dataset for initial deployment...")
|
110 |
+
np.random.seed(42)
|
111 |
+
n_samples = 100 # 增加样本数量
|
112 |
+
n_features = 38 # 26 MFCC features + 12 Chroma features
|
113 |
+
|
114 |
+
# 创建更有结构的合成特征
|
115 |
+
synthetic_features = np.random.normal(0, 1, (n_samples, n_features))
|
116 |
+
# 创建平衡的标签
|
117 |
+
synthetic_labels = np.concatenate([np.ones(n_samples//2), np.zeros(n_samples//2)])
|
118 |
+
|
119 |
+
return synthetic_features, synthetic_labels
|
120 |
+
|
121 |
+
def train_and_evaluate_model():
|
122 |
+
"""Train and evaluate the model."""
|
123 |
+
# Prepare dataset
|
124 |
+
print("Extracting features from audio files...")
|
125 |
+
X, y = prepare_dataset()
|
126 |
+
|
127 |
+
# Scale features
|
128 |
+
scaler = StandardScaler()
|
129 |
+
X_scaled = scaler.fit_transform(X)
|
130 |
+
|
131 |
+
# Split dataset
|
132 |
+
X_train, X_test, y_train, y_test = train_test_split(
|
133 |
+
X_scaled, y, test_size=0.2, random_state=42
|
134 |
+
)
|
135 |
+
|
136 |
+
# Train model
|
137 |
+
print("Training model...")
|
138 |
+
model = RandomForestClassifier(n_estimators=100, random_state=42)
|
139 |
+
model.fit(X_train, y_train)
|
140 |
+
|
141 |
+
# Evaluate model
|
142 |
+
print("Evaluating model...")
|
143 |
+
cv_scores = cross_val_score(model, X_scaled, y, cv=5)
|
144 |
+
print(f"Cross-validation scores: {cv_scores}")
|
145 |
+
print(f"Average CV score: {cv_scores.mean():.3f} (+/- {cv_scores.std() * 2:.3f})")
|
146 |
+
|
147 |
+
# Save model and scaler
|
148 |
+
print("Saving model and scaler...")
|
149 |
+
model_dir = os.path.join(os.path.dirname(__file__), "models")
|
150 |
+
os.makedirs(model_dir, exist_ok=True)
|
151 |
+
|
152 |
+
model_path = os.path.join(model_dir, "model.joblib")
|
153 |
+
scaler_path = os.path.join(model_dir, "scaler.joblib")
|
154 |
+
|
155 |
+
joblib.dump(model, model_path)
|
156 |
+
joblib.dump(scaler, scaler_path)
|
157 |
+
|
158 |
+
return model, scaler
|
159 |
+
|
160 |
+
if __name__ == "__main__":
|
161 |
+
train_and_evaluate_model()
|