Spaces:
Runtime error
Runtime error
import gradio as gr | |
import logging | |
from roboflow import Roboflow | |
from PIL import Image, ImageDraw, ImageFont, ImageFilter | |
import os | |
# Configure logging | |
logging.basicConfig( | |
level=logging.DEBUG, | |
format='%(asctime)s - %(levelname)s - %(message)s', | |
handlers=[ | |
logging.FileHandler("debug.log"), | |
logging.StreamHandler() | |
] | |
) | |
# Roboflow and model configuration | |
ROBOFLOW_API_KEY = "YOUR_ROBOFLOW_API_KEY" # Replace with your API key | |
PROJECT_NAME = "model_verification_project" | |
VERSION_NUMBER = 1 | |
FONT_PATH = "./STEVEHANDWRITING-REGULAR.TTF" | |
# Function to process image and overlay text | |
def process_image(image, text): | |
try: | |
# Initialize Roboflow | |
rf = Roboflow(api_key=ROBOFLOW_API_KEY) | |
project = rf.workspace().project(PROJECT_NAME) | |
model = project.version(VERSION_NUMBER).model | |
# Save input image temporarily | |
input_image_path = "/tmp/input_image.jpg" | |
image.save(input_image_path) | |
# Perform inference | |
logging.debug("Performing inference on the image...") | |
prediction = model.predict(input_image_path, confidence=40, overlap=30).json() | |
logging.debug(f"Inference result: {prediction}") | |
# Open the image for processing | |
pil_image = image.convert("RGBA") | |
# Iterate over detected objects | |
for obj in prediction['predictions']: | |
x1 = int(obj['x'] - obj['width'] / 2) | |
y1 = int(obj['y'] - obj['height'] / 2) | |
x2 = int(obj['x'] + obj['width'] / 2) | |
y2 = int(obj['y'] + obj['height'] / 2) | |
# Calculate dynamic font size | |
box_width = x2 - x1 | |
box_height = y2 - y1 | |
font_size = int(min(box_width // len(text), box_height // 2) * 0.8) | |
# Load font | |
try: | |
font = ImageFont.truetype(FONT_PATH, size=font_size) | |
except Exception as e: | |
logging.warning(f"Error loading font. Using default. {e}") | |
font = ImageFont.load_default() | |
# Calculate text position | |
text_layer = Image.new("RGBA", pil_image.size, (255, 255, 255, 0)) | |
text_draw = ImageDraw.Draw(text_layer) | |
text_width, text_height = text_draw.textsize(text, font=font) | |
text_x = x1 + (box_width - text_width) // 2 | |
text_y = y1 + (box_height - text_height) // 2 | |
# Draw text on a transparent layer | |
text_draw.text((text_x, text_y), text, fill=(0, 0, 0, 180), font=font) | |
# Apply slight blur and composite | |
blurred_text_layer = text_layer.filter(ImageFilter.GaussianBlur(radius=1.0)) | |
pil_image = Image.alpha_composite(pil_image, blurred_text_layer) | |
# Save and return output image path | |
output_image_path = "/tmp/output_image.png" | |
pil_image.convert("RGB").save(output_image_path) | |
return output_image_path | |
except Exception as e: | |
logging.error(f"Error during image processing: {e}") | |
return None | |
# Gradio interface function | |
def gradio_inference(image, text): | |
result_path = process_image(image, text) | |
if result_path: | |
return result_path, result_path, "Processing complete! Download the image below." | |
return None, None, "An error occurred while processing the image. Please check the logs." | |
# Gradio interface | |
interface = gr.Interface( | |
fn=gradio_inference, | |
inputs=[ | |
gr.Image(type="pil", label="Upload an Image"), | |
gr.Textbox(label="Enter Text to Overlay") | |
], | |
outputs=[ | |
gr.Image(label="Processed Image Preview"), # Preview processed image | |
gr.File(label="Download Processed Image"), # Download the image | |
gr.Textbox(label="Status") # Status message | |
], | |
title="Roboflow Detection with Text Overlay", | |
description="Upload an image, enter text to overlay, and let the Roboflow model process the image. Preview or download the output image below.", | |
allow_flagging="never" | |
) | |
# Launch the Gradio app | |
if __name__ == "__main__": | |
interface.launch(share=True) | |