|
import gradio as gr |
|
from langchain import HuggingFaceHub |
|
from langchain.chains.question_answering import load_qa_chain |
|
from langchain.document_loaders import PyMuPDFLoader |
|
from langchain.embeddings import HuggingFaceEmbeddings |
|
from langchain.llms import HuggingFacePipeline |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain.vectorstores import FAISS |
|
|
|
|
|
|
|
SIMILARITY_SEARCH_COUNT = 2 |
|
|
|
|
|
CHUNK_SIZE = 1000 |
|
|
|
|
|
MODEL_MAX_LENGTH = 300 |
|
|
|
|
|
print("Loading documents") |
|
loader = PyMuPDFLoader("rdna3-shader-instruction-set-architecture-feb-2023_0.pdf") |
|
documents = loader.load() |
|
|
|
print("Creating chunks") |
|
splitter = RecursiveCharacterTextSplitter(chunk_size=CHUNK_SIZE, chunk_overlap=0) |
|
chunks = splitter.split_documents(documents) |
|
|
|
print("Creating database") |
|
embeddings = HuggingFaceEmbeddings() |
|
db = FAISS.from_documents(chunks, embeddings) |
|
|
|
print("Loading model") |
|
llm = HuggingFacePipeline.from_model_id( |
|
model_id="google/flan-t5-large", |
|
task="text2text-generation", |
|
model_kwargs={"temperature": 0, "max_length": MODEL_MAX_LENGTH}) |
|
chain = load_qa_chain(llm, chain_type="stuff") |
|
|
|
def ask(question): |
|
answers = db.similarity_search(question, k=SIMILARITY_SEARCH_COUNT) |
|
result = chain.run(input_documents=answers, question=question) |
|
return result |
|
|
|
|
|
ask("What is VGPR") |
|
|
|
iface = gr.Interface( |
|
fn=ask, |
|
inputs=gr.Textbox(label="Question", placeholder="What is..."), |
|
outputs=gr.Textbox(label="Answer"), |
|
allow_flagging="never") |
|
|
|
iface.launch(share=False) |
|
|