3bodymo's picture
Update app.py
44e45d3
raw
history blame
1.44 kB
import torch
import gradio as gr
from huggingface_hub import hf_hub_download
from PIL import Image
yolov7_custom_weights = "best.pt"
model = torch.hub.load('Owaiskhan9654/yolov7-1:main',model='custom', path_or_model=yolov7_custom_weights, force_reload=True)
def object_detection(image: gr.inputs.Image = None):
results = model(image)
results.render()
count_dict = results.pandas().xyxy[0]['name'].value_counts().to_dict()
if len(count_dict)>0:
return Image.fromarray(results.imgs[0]),str(count_dict)
else:
return Image.fromarray(results.imgs[0]),'No objects found! Try another image.'
title = "Yolov7 Custom"
inputs = gr.inputs.Image(shape=(1920, 1080), image_mode="RGB", source="upload", label="Upload Image", optional=False)
outputs = gr.outputs.Image(type="pil", label="Output Image")
outputs_cls = gr.Label(label= "Categories Detected Proportion Statistics" )
examples1=[["image0.jpg"],["image1.jpg"],["image2.jpg"],["image3.jpg"],["image4.jpg"],["image5.jpg"],["image6.jpg"],["image7.jpg"]]
Top_Title="Yolov7 πŸš€ Visual Pollution Detection"
css = ".output-image, .input-image {height: 50rem !important; width: 100% !important;}"
css = ".image-preview {height: auto !important;}"
gr.Interface(
fn=object_detection,
inputs=inputs,
outputs=[outputs,outputs_cls],
title=Top_Title,
cache_examples= False,
allow_flagging='never',
examples=examples1).launch(debug=True)