Spaces:
Runtime error
Runtime error
import torch | |
import gradio as gr | |
from huggingface_hub import hf_hub_download | |
from PIL import Image | |
yolov7_custom_weights = "best.pt" | |
model = torch.hub.load('Owaiskhan9654/yolov7-1:main',model='custom', path_or_model=yolov7_custom_weights, force_reload=True) | |
def object_detection(image: gr.inputs.Image = None): | |
results = model(image) | |
results.render() | |
count_dict = results.pandas().xyxy[0]['name'].value_counts().to_dict() | |
if len(count_dict)>0: | |
return Image.fromarray(results.imgs[0]),str(count_dict) | |
else: | |
return Image.fromarray(results.imgs[0]),'No objects found! Try another image.' | |
title = "Yolov7 Custom" | |
inputs = gr.inputs.Image(shape=(1920, 1080), image_mode="RGB", source="upload", label="Upload Image", optional=False) | |
outputs = gr.outputs.Image(type="pil", label="Output Image") | |
outputs_cls = gr.Label(label= "Categories Detected Proportion Statistics" ) | |
examples1=[["image0.jpg"],["image1.jpg"],["image2.jpg"],["image3.jpg"],["image4.jpg"],["image5.jpg"],["image6.jpg"],["image7.jpg"]] | |
Top_Title="Yolov7 π Visual Pollution Detection" | |
css = ".output-image, .input-image {height: 50rem !important; width: 100% !important;}" | |
css = ".image-preview {height: auto !important;}" | |
gr.Interface( | |
fn=object_detection, | |
inputs=inputs, | |
outputs=[outputs,outputs_cls], | |
title=Top_Title, | |
cache_examples= False, | |
allow_flagging='never', | |
examples=examples1).launch(debug=True) |