Spaces:
Sleeping
Sleeping
Delete app (1).py
Browse files- app (1).py +0 -45
app (1).py
DELETED
@@ -1,45 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import easyocr
|
3 |
-
import cv2
|
4 |
-
import numpy as np
|
5 |
-
from PIL import Image
|
6 |
-
|
7 |
-
# Create an EasyOCR Reader
|
8 |
-
reader = easyocr.Reader(['en'])
|
9 |
-
|
10 |
-
def process_image(image):
|
11 |
-
# Convert the PIL image to a numpy array (compatible with OpenCV)
|
12 |
-
image_np = np.array(image)
|
13 |
-
|
14 |
-
# Convert the image to RGB (OpenCV loads as BGR, EasyOCR expects RGB)
|
15 |
-
image_rgb = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
|
16 |
-
|
17 |
-
# Use EasyOCR to read text from the image
|
18 |
-
result = reader.readtext(image_rgb)
|
19 |
-
|
20 |
-
# Draw bounding boxes around detected text
|
21 |
-
for (bbox, text, prob) in result:
|
22 |
-
(top_left, top_right, bottom_right, bottom_left) = bbox
|
23 |
-
top_left = tuple(map(int, top_left))
|
24 |
-
bottom_right = tuple(map(int, bottom_right))
|
25 |
-
cv2.rectangle(image_np, top_left, bottom_right, (0, 255, 0), 2)
|
26 |
-
|
27 |
-
# Convert back to RGB for display
|
28 |
-
result_image = Image.fromarray(cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB))
|
29 |
-
|
30 |
-
# Combine detected text and their confidence scores
|
31 |
-
detected_text = "\n".join([f"Detected text: {text}, Confidence: {prob:.2f}" for (_, text, prob) in result])
|
32 |
-
|
33 |
-
return result_image, detected_text
|
34 |
-
|
35 |
-
# Gradio Interface
|
36 |
-
interface = gr.Interface(
|
37 |
-
fn=process_image,
|
38 |
-
inputs="image",
|
39 |
-
outputs=["image", "text"],
|
40 |
-
title="OCR with EasyOCR",
|
41 |
-
description="Upload an image, and the system will detect text using EasyOCR and display it."
|
42 |
-
)
|
43 |
-
|
44 |
-
# Launch the interface
|
45 |
-
interface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|