Spaces:
Sleeping
Sleeping
| import torch | |
| import gradio as gr | |
| # Use a pipeline as a high-level helper | |
| from transformers import pipeline | |
| question_answer = pipeline( | |
| "question-answering", | |
| model="deepset/roberta-base-squad2") | |
| def read_file_content(file_obj): | |
| """ | |
| Reads the content of a file object and returns it. | |
| Parameters: | |
| file_obj (file object): The file object to read from. | |
| Returns: | |
| str: The content of the file. | |
| """ | |
| try: | |
| with open(file_obj.name, 'r', encoding='utf-8') as file: | |
| context = file.read() | |
| return context | |
| except Exception as e: | |
| return f"An error occurred: {e}" | |
| def get_answer(file, question): | |
| context = read_file_content(file) | |
| answer = question_answer(question=question, context=context) | |
| return answer["answer"] | |
| demo = gr.Interface(fn=get_answer, inputs=[gr.File(label="File Upload"), gr.Textbox(label="Prompt Input", lines=1)], | |
| outputs=[gr.Textbox(label="Response", lines=1)], | |
| title="@caesar-2series: Rag Application", | |
| description="Retrieval Augmented Generation Questions-Answering Application") | |
| demo.launch() |