VenusFactory / src /crawler /structure /download_alphafold.py
2dogey's picture
Upload folder using huggingface_hub
8918ac7 verified
import requests
import os
import time
import random
import argparse
import pandas as pd
from fake_useragent import UserAgent
from requests.adapters import HTTPAdapter
from requests.packages.urllib3.util.retry import Retry
from tqdm import tqdm
from concurrent.futures import ThreadPoolExecutor, as_completed
def download(pdb, outdir):
url = BASE_URL + pdb + "-F1-model_v4.pdb"
out_path = os.path.join(outdir, f"{pdb}.pdb")
message = f"{pdb} successfully downloaded"
if os.path.exists(out_path):
return f"{out_path} already exists, skipping"
# Use a random user agent
ua = UserAgent()
session = requests.Session()
retries = Retry(total=5, backoff_factor=1, status_forcelist=[429, 500, 502, 503, 504])
session.mount('http://', HTTPAdapter(max_retries=retries))
session.mount('https://', HTTPAdapter(max_retries=retries))
try:
response = session.get(url, headers={'User-Agent': ua.random})
response.raise_for_status()
with open(out_path, 'wb') as file:
file.write(response.content)
except Exception as e:
return f"{pdb} failed, {e}"
# Sleep for 1-2 seconds with 20% probability
if random.uniform(0, 1) < 0.2:
time.sleep(random.uniform(1, 2))
return message
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Download files from AlphaFold.')
parser.add_argument('-i', '--uniprot_id', help='Single UniProt ID to download')
parser.add_argument('-f', '--uniprot_id_file', type=str, help='Input file containing a list of UniProt ids')
parser.add_argument('-o', '--out_dir', type=str, default='.', help='Output directory')
parser.add_argument('-e', '--error_file', type=str, default=None, help='File to store names of proteins that failed to download')
parser.add_argument('-l', '--index_level', type=int, default=0, help='Build an index of the downloaded files')
parser.add_argument('-n', '--num_workers', type=int, default=12, help='Number of workers to use for downloading')
args = parser.parse_args()
if not args.uniprot_id and not args.uniprot_id_file:
print("Error: Must provide either uniprot_id or uniprot_id_file")
exit(1)
BASE_URL = "https://alphafold.ebi.ac.uk/files/AF-"
error_proteins = []
error_messages = []
def download_af_structure(uniprot_id, args):
out_dir = args.out_dir
for index in range(args.index_level):
index_dir_name = "".join(list(uniprot_id)[:index + 1])
out_dir = os.path.join(out_dir, index_dir_name)
os.makedirs(out_dir, exist_ok=True)
message = download(uniprot_id, out_dir)
return uniprot_id, message
if args.uniprot_id:
uniprot_id, message = download_af_structure(args.uniprot_id, args)
print(message)
if "failed" in message:
error_proteins.append(uniprot_id)
error_messages.append(message)
elif args.uniprot_id_file:
pdbs = open(args.uniprot_id_file, 'r').read().splitlines()
with ThreadPoolExecutor(max_workers=args.num_workers) as executor:
future_to_pdb = {executor.submit(download_af_structure, pdb, args): pdb for pdb in pdbs}
with tqdm(total=len(pdbs), desc="Downloading Files") as bar:
for future in as_completed(future_to_pdb):
pdb, message = future.result()
bar.set_description(message)
if "failed" in message:
error_proteins.append(pdb)
error_messages.append(message)
bar.update(1)
if args.error_file and error_proteins:
error_dict = {"protein": error_proteins, "error": error_messages}
error_dir = os.path.dirname(args.error_file)
os.makedirs(error_dir, exist_ok=True)
pd.DataFrame(error_dict).to_csv(args.error_file, index=False)