|
import os |
|
import numpy as np |
|
import torch |
|
import torch.nn.functional as F |
|
from torchvision.transforms import v2 |
|
from torchvision.utils import make_grid, save_image |
|
from torchmetrics.image.lpip import LearnedPerceptualImagePatchSimilarity |
|
import pytorch_lightning as pl |
|
from einops import rearrange, repeat |
|
|
|
from src.utils.train_util import instantiate_from_config |
|
|
|
|
|
class MVRecon(pl.LightningModule): |
|
def __init__( |
|
self, |
|
lrm_generator_config, |
|
lrm_path=None, |
|
input_size=256, |
|
render_size=192, |
|
): |
|
super(MVRecon, self).__init__() |
|
|
|
self.input_size = input_size |
|
self.render_size = render_size |
|
|
|
|
|
self.lrm_generator = instantiate_from_config(lrm_generator_config) |
|
if lrm_path is not None: |
|
lrm_ckpt = torch.load(lrm_path) |
|
self.lrm_generator.load_state_dict(lrm_ckpt['weights'], strict=False) |
|
|
|
self.lpips = LearnedPerceptualImagePatchSimilarity(net_type='vgg') |
|
|
|
self.validation_step_outputs = [] |
|
|
|
def on_fit_start(self): |
|
if self.global_rank == 0: |
|
os.makedirs(os.path.join(self.logdir, 'images'), exist_ok=True) |
|
os.makedirs(os.path.join(self.logdir, 'images_val'), exist_ok=True) |
|
|
|
def prepare_batch_data(self, batch): |
|
lrm_generator_input = {} |
|
render_gt = {} |
|
|
|
|
|
images = batch['input_images'] |
|
images = v2.functional.resize( |
|
images, self.input_size, interpolation=3, antialias=True).clamp(0, 1) |
|
|
|
lrm_generator_input['images'] = images.to(self.device) |
|
|
|
|
|
input_c2ws = batch['input_c2ws'].flatten(-2) |
|
input_Ks = batch['input_Ks'].flatten(-2) |
|
target_c2ws = batch['target_c2ws'].flatten(-2) |
|
target_Ks = batch['target_Ks'].flatten(-2) |
|
render_cameras_input = torch.cat([input_c2ws, input_Ks], dim=-1) |
|
render_cameras_target = torch.cat([target_c2ws, target_Ks], dim=-1) |
|
render_cameras = torch.cat([render_cameras_input, render_cameras_target], dim=1) |
|
|
|
input_extrinsics = input_c2ws[:, :, :12] |
|
input_intrinsics = torch.stack([ |
|
input_Ks[:, :, 0], input_Ks[:, :, 4], |
|
input_Ks[:, :, 2], input_Ks[:, :, 5], |
|
], dim=-1) |
|
cameras = torch.cat([input_extrinsics, input_intrinsics], dim=-1) |
|
|
|
|
|
cameras = cameras + torch.rand_like(cameras) * 0.04 - 0.02 |
|
|
|
lrm_generator_input['cameras'] = cameras.to(self.device) |
|
lrm_generator_input['render_cameras'] = render_cameras.to(self.device) |
|
|
|
|
|
target_images = torch.cat([batch['input_images'], batch['target_images']], dim=1) |
|
target_depths = torch.cat([batch['input_depths'], batch['target_depths']], dim=1) |
|
target_alphas = torch.cat([batch['input_alphas'], batch['target_alphas']], dim=1) |
|
|
|
|
|
render_size = np.random.randint(self.render_size, 513) |
|
target_images = v2.functional.resize( |
|
target_images, render_size, interpolation=3, antialias=True).clamp(0, 1) |
|
target_depths = v2.functional.resize( |
|
target_depths, render_size, interpolation=0, antialias=True) |
|
target_alphas = v2.functional.resize( |
|
target_alphas, render_size, interpolation=0, antialias=True) |
|
|
|
crop_params = v2.RandomCrop.get_params( |
|
target_images, output_size=(self.render_size, self.render_size)) |
|
target_images = v2.functional.crop(target_images, *crop_params) |
|
target_depths = v2.functional.crop(target_depths, *crop_params)[:, :, 0:1] |
|
target_alphas = v2.functional.crop(target_alphas, *crop_params)[:, :, 0:1] |
|
|
|
lrm_generator_input['render_size'] = render_size |
|
lrm_generator_input['crop_params'] = crop_params |
|
|
|
render_gt['target_images'] = target_images.to(self.device) |
|
render_gt['target_depths'] = target_depths.to(self.device) |
|
render_gt['target_alphas'] = target_alphas.to(self.device) |
|
|
|
return lrm_generator_input, render_gt |
|
|
|
def prepare_validation_batch_data(self, batch): |
|
lrm_generator_input = {} |
|
|
|
|
|
images = batch['input_images'] |
|
images = v2.functional.resize( |
|
images, self.input_size, interpolation=3, antialias=True).clamp(0, 1) |
|
|
|
lrm_generator_input['images'] = images.to(self.device) |
|
|
|
input_c2ws = batch['input_c2ws'].flatten(-2) |
|
input_Ks = batch['input_Ks'].flatten(-2) |
|
|
|
input_extrinsics = input_c2ws[:, :, :12] |
|
input_intrinsics = torch.stack([ |
|
input_Ks[:, :, 0], input_Ks[:, :, 4], |
|
input_Ks[:, :, 2], input_Ks[:, :, 5], |
|
], dim=-1) |
|
cameras = torch.cat([input_extrinsics, input_intrinsics], dim=-1) |
|
|
|
lrm_generator_input['cameras'] = cameras.to(self.device) |
|
|
|
render_c2ws = batch['render_c2ws'].flatten(-2) |
|
render_Ks = batch['render_Ks'].flatten(-2) |
|
render_cameras = torch.cat([render_c2ws, render_Ks], dim=-1) |
|
|
|
lrm_generator_input['render_cameras'] = render_cameras.to(self.device) |
|
lrm_generator_input['render_size'] = 384 |
|
lrm_generator_input['crop_params'] = None |
|
|
|
return lrm_generator_input |
|
|
|
def forward_lrm_generator( |
|
self, |
|
images, |
|
cameras, |
|
render_cameras, |
|
render_size=192, |
|
crop_params=None, |
|
chunk_size=1, |
|
): |
|
planes = torch.utils.checkpoint.checkpoint( |
|
self.lrm_generator.forward_planes, |
|
images, |
|
cameras, |
|
use_reentrant=False, |
|
) |
|
frames = [] |
|
for i in range(0, render_cameras.shape[1], chunk_size): |
|
frames.append( |
|
torch.utils.checkpoint.checkpoint( |
|
self.lrm_generator.synthesizer, |
|
planes, |
|
cameras=render_cameras[:, i:i+chunk_size], |
|
render_size=render_size, |
|
crop_params=crop_params, |
|
use_reentrant=False |
|
) |
|
) |
|
frames = { |
|
k: torch.cat([r[k] for r in frames], dim=1) |
|
for k in frames[0].keys() |
|
} |
|
return frames |
|
|
|
def forward(self, lrm_generator_input): |
|
images = lrm_generator_input['images'] |
|
cameras = lrm_generator_input['cameras'] |
|
render_cameras = lrm_generator_input['render_cameras'] |
|
render_size = lrm_generator_input['render_size'] |
|
crop_params = lrm_generator_input['crop_params'] |
|
|
|
out = self.forward_lrm_generator( |
|
images, |
|
cameras, |
|
render_cameras, |
|
render_size=render_size, |
|
crop_params=crop_params, |
|
chunk_size=1, |
|
) |
|
render_images = torch.clamp(out['images_rgb'], 0.0, 1.0) |
|
render_depths = out['images_depth'] |
|
render_alphas = torch.clamp(out['images_weight'], 0.0, 1.0) |
|
|
|
out = { |
|
'render_images': render_images, |
|
'render_depths': render_depths, |
|
'render_alphas': render_alphas, |
|
} |
|
return out |
|
|
|
def training_step(self, batch, batch_idx): |
|
lrm_generator_input, render_gt = self.prepare_batch_data(batch) |
|
|
|
render_out = self.forward(lrm_generator_input) |
|
|
|
loss, loss_dict = self.compute_loss(render_out, render_gt) |
|
|
|
self.log_dict(loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=True) |
|
|
|
if self.global_step % 1000 == 0 and self.global_rank == 0: |
|
B, N, C, H, W = render_gt['target_images'].shape |
|
N_in = lrm_generator_input['images'].shape[1] |
|
|
|
input_images = v2.functional.resize( |
|
lrm_generator_input['images'], (H, W), interpolation=3, antialias=True).clamp(0, 1) |
|
input_images = torch.cat( |
|
[input_images, torch.ones(B, N-N_in, C, H, W).to(input_images)], dim=1) |
|
|
|
input_images = rearrange( |
|
input_images, 'b n c h w -> b c h (n w)') |
|
target_images = rearrange( |
|
render_gt['target_images'], 'b n c h w -> b c h (n w)') |
|
render_images = rearrange( |
|
render_out['render_images'], 'b n c h w -> b c h (n w)') |
|
target_alphas = rearrange( |
|
repeat(render_gt['target_alphas'], 'b n 1 h w -> b n 3 h w'), 'b n c h w -> b c h (n w)') |
|
render_alphas = rearrange( |
|
repeat(render_out['render_alphas'], 'b n 1 h w -> b n 3 h w'), 'b n c h w -> b c h (n w)') |
|
target_depths = rearrange( |
|
repeat(render_gt['target_depths'], 'b n 1 h w -> b n 3 h w'), 'b n c h w -> b c h (n w)') |
|
render_depths = rearrange( |
|
repeat(render_out['render_depths'], 'b n 1 h w -> b n 3 h w'), 'b n c h w -> b c h (n w)') |
|
MAX_DEPTH = torch.max(target_depths) |
|
target_depths = target_depths / MAX_DEPTH * target_alphas |
|
render_depths = render_depths / MAX_DEPTH |
|
|
|
grid = torch.cat([ |
|
input_images, |
|
target_images, render_images, |
|
target_alphas, render_alphas, |
|
target_depths, render_depths, |
|
], dim=-2) |
|
grid = make_grid(grid, nrow=target_images.shape[0], normalize=True, value_range=(0, 1)) |
|
|
|
save_image(grid, os.path.join(self.logdir, 'images', f'train_{self.global_step:07d}.png')) |
|
|
|
return loss |
|
|
|
def compute_loss(self, render_out, render_gt): |
|
|
|
render_images = render_out['render_images'] |
|
target_images = render_gt['target_images'].to(render_images) |
|
render_images = rearrange(render_images, 'b n ... -> (b n) ...') * 2.0 - 1.0 |
|
target_images = rearrange(target_images, 'b n ... -> (b n) ...') * 2.0 - 1.0 |
|
|
|
loss_mse = F.mse_loss(render_images, target_images) |
|
loss_lpips = 2.0 * self.lpips(render_images, target_images) |
|
|
|
render_alphas = render_out['render_alphas'] |
|
target_alphas = render_gt['target_alphas'] |
|
loss_mask = F.mse_loss(render_alphas, target_alphas) |
|
|
|
loss = loss_mse + loss_lpips + loss_mask |
|
|
|
prefix = 'train' |
|
loss_dict = {} |
|
loss_dict.update({f'{prefix}/loss_mse': loss_mse}) |
|
loss_dict.update({f'{prefix}/loss_lpips': loss_lpips}) |
|
loss_dict.update({f'{prefix}/loss_mask': loss_mask}) |
|
loss_dict.update({f'{prefix}/loss': loss}) |
|
|
|
return loss, loss_dict |
|
|
|
@torch.no_grad() |
|
def validation_step(self, batch, batch_idx): |
|
lrm_generator_input = self.prepare_validation_batch_data(batch) |
|
|
|
render_out = self.forward(lrm_generator_input) |
|
render_images = render_out['render_images'] |
|
render_images = rearrange(render_images, 'b n c h w -> b c h (n w)') |
|
|
|
self.validation_step_outputs.append(render_images) |
|
|
|
def on_validation_epoch_end(self): |
|
images = torch.cat(self.validation_step_outputs, dim=-1) |
|
|
|
all_images = self.all_gather(images) |
|
all_images = rearrange(all_images, 'r b c h w -> (r b) c h w') |
|
|
|
if self.global_rank == 0: |
|
image_path = os.path.join(self.logdir, 'images_val', f'val_{self.global_step:07d}.png') |
|
|
|
grid = make_grid(all_images, nrow=1, normalize=True, value_range=(0, 1)) |
|
save_image(grid, image_path) |
|
print(f"Saved image to {image_path}") |
|
|
|
self.validation_step_outputs.clear() |
|
|
|
def configure_optimizers(self): |
|
lr = self.learning_rate |
|
|
|
params = [] |
|
|
|
lrm_params_fast, lrm_params_slow = [], [] |
|
for n, p in self.lrm_generator.named_parameters(): |
|
if 'adaLN_modulation' in n or 'camera_embedder' in n: |
|
lrm_params_fast.append(p) |
|
else: |
|
lrm_params_slow.append(p) |
|
params.append({"params": lrm_params_fast, "lr": lr, "weight_decay": 0.01 }) |
|
params.append({"params": lrm_params_slow, "lr": lr / 10.0, "weight_decay": 0.01 }) |
|
|
|
optimizer = torch.optim.AdamW(params, lr=lr, betas=(0.90, 0.95)) |
|
scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, 3000, eta_min=lr/4) |
|
|
|
return {'optimizer': optimizer, 'lr_scheduler': scheduler} |
|
|