|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import itertools |
|
import torch |
|
import torch.nn as nn |
|
|
|
from .utils.renderer import ImportanceRenderer |
|
from .utils.ray_sampler import RaySampler |
|
|
|
|
|
class OSGDecoder(nn.Module): |
|
""" |
|
Triplane decoder that gives RGB and sigma values from sampled features. |
|
Using ReLU here instead of Softplus in the original implementation. |
|
|
|
Reference: |
|
EG3D: https://github.com/NVlabs/eg3d/blob/main/eg3d/training/triplane.py#L112 |
|
""" |
|
def __init__(self, n_features: int, |
|
hidden_dim: int = 64, num_layers: int = 4, activation: nn.Module = nn.ReLU): |
|
super().__init__() |
|
self.net = nn.Sequential( |
|
nn.Linear(3 * n_features, hidden_dim), |
|
activation(), |
|
*itertools.chain(*[[ |
|
nn.Linear(hidden_dim, hidden_dim), |
|
activation(), |
|
] for _ in range(num_layers - 2)]), |
|
nn.Linear(hidden_dim, 1 + 3), |
|
) |
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Linear): |
|
nn.init.zeros_(m.bias) |
|
|
|
def forward(self, sampled_features, ray_directions): |
|
|
|
|
|
|
|
_N, n_planes, _M, _C = sampled_features.shape |
|
sampled_features = sampled_features.permute(0, 2, 1, 3).reshape(_N, _M, n_planes*_C) |
|
x = sampled_features |
|
|
|
N, M, C = x.shape |
|
x = x.contiguous().view(N*M, C) |
|
|
|
x = self.net(x) |
|
x = x.view(N, M, -1) |
|
rgb = torch.sigmoid(x[..., 1:])*(1 + 2*0.001) - 0.001 |
|
sigma = x[..., 0:1] |
|
|
|
return {'rgb': rgb, 'sigma': sigma} |
|
|
|
|
|
class TriplaneSynthesizer(nn.Module): |
|
""" |
|
Synthesizer that renders a triplane volume with planes and a camera. |
|
|
|
Reference: |
|
EG3D: https://github.com/NVlabs/eg3d/blob/main/eg3d/training/triplane.py#L19 |
|
""" |
|
|
|
DEFAULT_RENDERING_KWARGS = { |
|
'ray_start': 'auto', |
|
'ray_end': 'auto', |
|
'box_warp': 2., |
|
'white_back': True, |
|
'disparity_space_sampling': False, |
|
'clamp_mode': 'softplus', |
|
'sampler_bbox_min': -1., |
|
'sampler_bbox_max': 1., |
|
} |
|
|
|
def __init__(self, triplane_dim: int, samples_per_ray: int): |
|
super().__init__() |
|
|
|
|
|
self.triplane_dim = triplane_dim |
|
self.rendering_kwargs = { |
|
**self.DEFAULT_RENDERING_KWARGS, |
|
'depth_resolution': samples_per_ray // 2, |
|
'depth_resolution_importance': samples_per_ray // 2, |
|
} |
|
|
|
|
|
self.renderer = ImportanceRenderer() |
|
self.ray_sampler = RaySampler() |
|
|
|
|
|
self.decoder = OSGDecoder(n_features=triplane_dim) |
|
|
|
def forward(self, planes, cameras, render_size=128, crop_params=None): |
|
|
|
|
|
|
|
assert planes.shape[0] == cameras.shape[0], "Batch size mismatch for planes and cameras" |
|
N, M = cameras.shape[:2] |
|
|
|
cam2world_matrix = cameras[..., :16].view(N, M, 4, 4) |
|
intrinsics = cameras[..., 16:25].view(N, M, 3, 3) |
|
|
|
|
|
ray_origins, ray_directions = self.ray_sampler( |
|
cam2world_matrix=cam2world_matrix.reshape(-1, 4, 4), |
|
intrinsics=intrinsics.reshape(-1, 3, 3), |
|
render_size=render_size, |
|
) |
|
assert N*M == ray_origins.shape[0], "Batch size mismatch for ray_origins" |
|
assert ray_origins.dim() == 3, "ray_origins should be 3-dimensional" |
|
|
|
|
|
if crop_params is not None: |
|
ray_origins = ray_origins.reshape(N*M, render_size, render_size, 3) |
|
ray_directions = ray_directions.reshape(N*M, render_size, render_size, 3) |
|
i, j, h, w = crop_params |
|
ray_origins = ray_origins[:, i:i+h, j:j+w, :].reshape(N*M, -1, 3) |
|
ray_directions = ray_directions[:, i:i+h, j:j+w, :].reshape(N*M, -1, 3) |
|
|
|
|
|
rgb_samples, depth_samples, weights_samples = self.renderer( |
|
planes.repeat_interleave(M, dim=0), self.decoder, ray_origins, ray_directions, self.rendering_kwargs, |
|
) |
|
|
|
|
|
if crop_params is not None: |
|
Himg, Wimg = crop_params[2:] |
|
else: |
|
Himg = Wimg = render_size |
|
rgb_images = rgb_samples.permute(0, 2, 1).reshape(N, M, rgb_samples.shape[-1], Himg, Wimg).contiguous() |
|
depth_images = depth_samples.permute(0, 2, 1).reshape(N, M, 1, Himg, Wimg) |
|
weight_images = weights_samples.permute(0, 2, 1).reshape(N, M, 1, Himg, Wimg) |
|
|
|
out = { |
|
'images_rgb': rgb_images, |
|
'images_depth': depth_images, |
|
'images_weight': weight_images, |
|
} |
|
return out |
|
|
|
def forward_grid(self, planes, grid_size: int, aabb: torch.Tensor = None): |
|
|
|
|
|
|
|
if aabb is None: |
|
aabb = torch.tensor([ |
|
[self.rendering_kwargs['sampler_bbox_min']] * 3, |
|
[self.rendering_kwargs['sampler_bbox_max']] * 3, |
|
], device=planes.device, dtype=planes.dtype).unsqueeze(0).repeat(planes.shape[0], 1, 1) |
|
assert planes.shape[0] == aabb.shape[0], "Batch size mismatch for planes and aabb" |
|
N = planes.shape[0] |
|
|
|
|
|
grid_points = [] |
|
for i in range(N): |
|
grid_points.append(torch.stack(torch.meshgrid( |
|
torch.linspace(aabb[i, 0, 0], aabb[i, 1, 0], grid_size, device=planes.device), |
|
torch.linspace(aabb[i, 0, 1], aabb[i, 1, 1], grid_size, device=planes.device), |
|
torch.linspace(aabb[i, 0, 2], aabb[i, 1, 2], grid_size, device=planes.device), |
|
indexing='ij', |
|
), dim=-1).reshape(-1, 3)) |
|
cube_grid = torch.stack(grid_points, dim=0).to(planes.device) |
|
|
|
features = self.forward_points(planes, cube_grid) |
|
|
|
|
|
features = { |
|
k: v.reshape(N, grid_size, grid_size, grid_size, -1) |
|
for k, v in features.items() |
|
} |
|
return features |
|
|
|
def forward_points(self, planes, points: torch.Tensor, chunk_size: int = 2**20): |
|
|
|
|
|
N, P = points.shape[:2] |
|
|
|
|
|
outs = [] |
|
for i in range(0, points.shape[1], chunk_size): |
|
chunk_points = points[:, i:i+chunk_size] |
|
|
|
|
|
chunk_out = self.renderer.run_model_activated( |
|
planes=planes, |
|
decoder=self.decoder, |
|
sample_coordinates=chunk_points, |
|
sample_directions=torch.zeros_like(chunk_points), |
|
options=self.rendering_kwargs, |
|
) |
|
outs.append(chunk_out) |
|
|
|
|
|
point_features = { |
|
k: torch.cat([out[k] for out in outs], dim=1) |
|
for k in outs[0].keys() |
|
} |
|
return point_features |
|
|