|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import nvdiffrast.torch as dr |
|
from . import Renderer |
|
|
|
_FG_LUT = None |
|
|
|
|
|
def interpolate(attr, rast, attr_idx, rast_db=None): |
|
return dr.interpolate( |
|
attr.contiguous(), rast, attr_idx, rast_db=rast_db, |
|
diff_attrs=None if rast_db is None else 'all') |
|
|
|
|
|
def xfm_points(points, matrix, use_python=True): |
|
'''Transform points. |
|
Args: |
|
points: Tensor containing 3D points with shape [minibatch_size, num_vertices, 3] or [1, num_vertices, 3] |
|
matrix: A 4x4 transform matrix with shape [minibatch_size, 4, 4] |
|
use_python: Use PyTorch's torch.matmul (for validation) |
|
Returns: |
|
Transformed points in homogeneous 4D with shape [minibatch_size, num_vertices, 4]. |
|
''' |
|
out = torch.matmul(torch.nn.functional.pad(points, pad=(0, 1), mode='constant', value=1.0), torch.transpose(matrix, 1, 2)) |
|
if torch.is_anomaly_enabled(): |
|
assert torch.all(torch.isfinite(out)), "Output of xfm_points contains inf or NaN" |
|
return out |
|
|
|
|
|
def dot(x, y): |
|
return torch.sum(x * y, -1, keepdim=True) |
|
|
|
|
|
def compute_vertex_normal(v_pos, t_pos_idx): |
|
i0 = t_pos_idx[:, 0] |
|
i1 = t_pos_idx[:, 1] |
|
i2 = t_pos_idx[:, 2] |
|
|
|
v0 = v_pos[i0, :] |
|
v1 = v_pos[i1, :] |
|
v2 = v_pos[i2, :] |
|
|
|
face_normals = torch.cross(v1 - v0, v2 - v0) |
|
|
|
|
|
v_nrm = torch.zeros_like(v_pos) |
|
v_nrm.scatter_add_(0, i0[:, None].repeat(1, 3), face_normals) |
|
v_nrm.scatter_add_(0, i1[:, None].repeat(1, 3), face_normals) |
|
v_nrm.scatter_add_(0, i2[:, None].repeat(1, 3), face_normals) |
|
|
|
|
|
v_nrm = torch.where( |
|
dot(v_nrm, v_nrm) > 1e-20, v_nrm, torch.as_tensor([0.0, 0.0, 1.0]).to(v_nrm) |
|
) |
|
v_nrm = F.normalize(v_nrm, dim=1) |
|
assert torch.all(torch.isfinite(v_nrm)) |
|
|
|
return v_nrm |
|
|
|
|
|
class NeuralRender(Renderer): |
|
def __init__(self, device='cuda', camera_model=None): |
|
super(NeuralRender, self).__init__() |
|
self.device = device |
|
self.ctx = dr.RasterizeCudaContext(device=device) |
|
self.projection_mtx = None |
|
self.camera = camera_model |
|
|
|
def render_mesh( |
|
self, |
|
mesh_v_pos_bxnx3, |
|
mesh_t_pos_idx_fx3, |
|
camera_mv_bx4x4, |
|
mesh_v_feat_bxnxd, |
|
resolution=256, |
|
spp=1, |
|
device='cuda', |
|
hierarchical_mask=False |
|
): |
|
assert not hierarchical_mask |
|
|
|
mtx_in = torch.tensor(camera_mv_bx4x4, dtype=torch.float32, device=device) if not torch.is_tensor(camera_mv_bx4x4) else camera_mv_bx4x4 |
|
v_pos = xfm_points(mesh_v_pos_bxnx3, mtx_in) |
|
v_pos_clip = self.camera.project(v_pos) |
|
|
|
v_nrm = compute_vertex_normal(mesh_v_pos_bxnx3[0], mesh_t_pos_idx_fx3.long()) |
|
|
|
|
|
|
|
num_layers = 1 |
|
mask_pyramid = None |
|
assert mesh_t_pos_idx_fx3.shape[0] > 0 |
|
mesh_v_feat_bxnxd = torch.cat([mesh_v_feat_bxnxd.repeat(v_pos.shape[0], 1, 1), v_pos], dim=-1) |
|
|
|
with dr.DepthPeeler(self.ctx, v_pos_clip, mesh_t_pos_idx_fx3, [resolution * spp, resolution * spp]) as peeler: |
|
for _ in range(num_layers): |
|
rast, db = peeler.rasterize_next_layer() |
|
gb_feat, _ = interpolate(mesh_v_feat_bxnxd, rast, mesh_t_pos_idx_fx3) |
|
|
|
hard_mask = torch.clamp(rast[..., -1:], 0, 1) |
|
antialias_mask = dr.antialias( |
|
hard_mask.clone().contiguous(), rast, v_pos_clip, |
|
mesh_t_pos_idx_fx3) |
|
|
|
depth = gb_feat[..., -2:-1] |
|
ori_mesh_feature = gb_feat[..., :-4] |
|
|
|
normal, _ = interpolate(v_nrm[None, ...], rast, mesh_t_pos_idx_fx3) |
|
normal = dr.antialias(normal.clone().contiguous(), rast, v_pos_clip, mesh_t_pos_idx_fx3) |
|
normal = F.normalize(normal, dim=-1) |
|
normal = torch.lerp(torch.zeros_like(normal), (normal + 1.0) / 2.0, hard_mask.float()) |
|
|
|
return ori_mesh_feature, antialias_mask, hard_mask, rast, v_pos_clip, mask_pyramid, depth, normal |
|
|