|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch ViT model.""" |
|
|
|
|
|
import collections.abc |
|
import math |
|
from typing import Dict, List, Optional, Set, Tuple, Union |
|
|
|
import torch |
|
from torch import nn |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutput, |
|
BaseModelOutputWithPooling, |
|
) |
|
from transformers import PreTrainedModel, ViTConfig |
|
from transformers.pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer |
|
|
|
|
|
class ViTEmbeddings(nn.Module): |
|
""" |
|
Construct the CLS token, position and patch embeddings. Optionally, also the mask token. |
|
""" |
|
|
|
def __init__(self, config: ViTConfig, use_mask_token: bool = False) -> None: |
|
super().__init__() |
|
|
|
self.cls_token = nn.Parameter(torch.randn(1, 1, config.hidden_size)) |
|
self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) if use_mask_token else None |
|
self.patch_embeddings = ViTPatchEmbeddings(config) |
|
num_patches = self.patch_embeddings.num_patches |
|
self.position_embeddings = nn.Parameter(torch.randn(1, num_patches + 1, config.hidden_size)) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
self.config = config |
|
|
|
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor: |
|
""" |
|
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher |
|
resolution images. |
|
|
|
Source: |
|
https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174 |
|
""" |
|
|
|
num_patches = embeddings.shape[1] - 1 |
|
num_positions = self.position_embeddings.shape[1] - 1 |
|
if num_patches == num_positions and height == width: |
|
return self.position_embeddings |
|
class_pos_embed = self.position_embeddings[:, 0] |
|
patch_pos_embed = self.position_embeddings[:, 1:] |
|
dim = embeddings.shape[-1] |
|
h0 = height // self.config.patch_size |
|
w0 = width // self.config.patch_size |
|
|
|
|
|
h0, w0 = h0 + 0.1, w0 + 0.1 |
|
patch_pos_embed = patch_pos_embed.reshape(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim) |
|
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2) |
|
patch_pos_embed = nn.functional.interpolate( |
|
patch_pos_embed, |
|
scale_factor=(h0 / math.sqrt(num_positions), w0 / math.sqrt(num_positions)), |
|
mode="bicubic", |
|
align_corners=False, |
|
) |
|
assert int(h0) == patch_pos_embed.shape[-2] and int(w0) == patch_pos_embed.shape[-1] |
|
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) |
|
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1) |
|
|
|
def forward( |
|
self, |
|
pixel_values: torch.Tensor, |
|
bool_masked_pos: Optional[torch.BoolTensor] = None, |
|
interpolate_pos_encoding: bool = False, |
|
) -> torch.Tensor: |
|
batch_size, num_channels, height, width = pixel_values.shape |
|
embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding) |
|
|
|
if bool_masked_pos is not None: |
|
seq_length = embeddings.shape[1] |
|
mask_tokens = self.mask_token.expand(batch_size, seq_length, -1) |
|
|
|
mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens) |
|
embeddings = embeddings * (1.0 - mask) + mask_tokens * mask |
|
|
|
|
|
cls_tokens = self.cls_token.expand(batch_size, -1, -1) |
|
embeddings = torch.cat((cls_tokens, embeddings), dim=1) |
|
|
|
|
|
if interpolate_pos_encoding: |
|
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width) |
|
else: |
|
embeddings = embeddings + self.position_embeddings |
|
|
|
embeddings = self.dropout(embeddings) |
|
|
|
return embeddings |
|
|
|
|
|
class ViTPatchEmbeddings(nn.Module): |
|
""" |
|
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial |
|
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a |
|
Transformer. |
|
""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
image_size, patch_size = config.image_size, config.patch_size |
|
num_channels, hidden_size = config.num_channels, config.hidden_size |
|
|
|
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) |
|
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) |
|
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) |
|
self.image_size = image_size |
|
self.patch_size = patch_size |
|
self.num_channels = num_channels |
|
self.num_patches = num_patches |
|
|
|
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) |
|
|
|
def forward(self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False) -> torch.Tensor: |
|
batch_size, num_channels, height, width = pixel_values.shape |
|
if num_channels != self.num_channels: |
|
raise ValueError( |
|
"Make sure that the channel dimension of the pixel values match with the one set in the configuration." |
|
f" Expected {self.num_channels} but got {num_channels}." |
|
) |
|
if not interpolate_pos_encoding: |
|
if height != self.image_size[0] or width != self.image_size[1]: |
|
raise ValueError( |
|
f"Input image size ({height}*{width}) doesn't match model" |
|
f" ({self.image_size[0]}*{self.image_size[1]})." |
|
) |
|
embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2) |
|
return embeddings |
|
|
|
|
|
class ViTSelfAttention(nn.Module): |
|
def __init__(self, config: ViTConfig) -> None: |
|
super().__init__() |
|
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): |
|
raise ValueError( |
|
f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " |
|
f"heads {config.num_attention_heads}." |
|
) |
|
|
|
self.num_attention_heads = config.num_attention_heads |
|
self.attention_head_size = int(config.hidden_size / config.num_attention_heads) |
|
self.all_head_size = self.num_attention_heads * self.attention_head_size |
|
|
|
self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) |
|
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) |
|
self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) |
|
|
|
self.dropout = nn.Dropout(config.attention_probs_dropout_prob) |
|
|
|
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: |
|
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) |
|
x = x.view(new_x_shape) |
|
return x.permute(0, 2, 1, 3) |
|
|
|
def forward( |
|
self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False |
|
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: |
|
mixed_query_layer = self.query(hidden_states) |
|
|
|
key_layer = self.transpose_for_scores(self.key(hidden_states)) |
|
value_layer = self.transpose_for_scores(self.value(hidden_states)) |
|
query_layer = self.transpose_for_scores(mixed_query_layer) |
|
|
|
|
|
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) |
|
|
|
attention_scores = attention_scores / math.sqrt(self.attention_head_size) |
|
|
|
|
|
attention_probs = nn.functional.softmax(attention_scores, dim=-1) |
|
|
|
|
|
|
|
attention_probs = self.dropout(attention_probs) |
|
|
|
|
|
if head_mask is not None: |
|
attention_probs = attention_probs * head_mask |
|
|
|
context_layer = torch.matmul(attention_probs, value_layer) |
|
|
|
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() |
|
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) |
|
context_layer = context_layer.view(new_context_layer_shape) |
|
|
|
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) |
|
|
|
return outputs |
|
|
|
|
|
class ViTSelfOutput(nn.Module): |
|
""" |
|
The residual connection is defined in ViTLayer instead of here (as is the case with other models), due to the |
|
layernorm applied before each block. |
|
""" |
|
|
|
def __init__(self, config: ViTConfig) -> None: |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class ViTAttention(nn.Module): |
|
def __init__(self, config: ViTConfig) -> None: |
|
super().__init__() |
|
self.attention = ViTSelfAttention(config) |
|
self.output = ViTSelfOutput(config) |
|
self.pruned_heads = set() |
|
|
|
def prune_heads(self, heads: Set[int]) -> None: |
|
if len(heads) == 0: |
|
return |
|
heads, index = find_pruneable_heads_and_indices( |
|
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads |
|
) |
|
|
|
|
|
self.attention.query = prune_linear_layer(self.attention.query, index) |
|
self.attention.key = prune_linear_layer(self.attention.key, index) |
|
self.attention.value = prune_linear_layer(self.attention.value, index) |
|
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) |
|
|
|
|
|
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) |
|
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads |
|
self.pruned_heads = self.pruned_heads.union(heads) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: bool = False, |
|
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: |
|
self_outputs = self.attention(hidden_states, head_mask, output_attentions) |
|
|
|
attention_output = self.output(self_outputs[0], hidden_states) |
|
|
|
outputs = (attention_output,) + self_outputs[1:] |
|
return outputs |
|
|
|
|
|
class ViTIntermediate(nn.Module): |
|
def __init__(self, config: ViTConfig) -> None: |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.intermediate_size) |
|
if isinstance(config.hidden_act, str): |
|
self.intermediate_act_fn = ACT2FN[config.hidden_act] |
|
else: |
|
self.intermediate_act_fn = config.hidden_act |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.intermediate_act_fn(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class ViTOutput(nn.Module): |
|
def __init__(self, config: ViTConfig) -> None: |
|
super().__init__() |
|
self.dense = nn.Linear(config.intermediate_size, config.hidden_size) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
|
|
hidden_states = hidden_states + input_tensor |
|
|
|
return hidden_states |
|
|
|
|
|
def modulate(x, shift, scale): |
|
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) |
|
|
|
|
|
class ViTLayer(nn.Module): |
|
"""This corresponds to the Block class in the timm implementation.""" |
|
|
|
def __init__(self, config: ViTConfig) -> None: |
|
super().__init__() |
|
self.chunk_size_feed_forward = config.chunk_size_feed_forward |
|
self.seq_len_dim = 1 |
|
self.attention = ViTAttention(config) |
|
self.intermediate = ViTIntermediate(config) |
|
self.output = ViTOutput(config) |
|
self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
self.adaLN_modulation = nn.Sequential( |
|
nn.SiLU(), |
|
nn.Linear(config.hidden_size, 4 * config.hidden_size, bias=True) |
|
) |
|
nn.init.constant_(self.adaLN_modulation[-1].weight, 0) |
|
nn.init.constant_(self.adaLN_modulation[-1].bias, 0) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
adaln_input: torch.Tensor = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: bool = False, |
|
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: |
|
shift_msa, scale_msa, shift_mlp, scale_mlp = self.adaLN_modulation(adaln_input).chunk(4, dim=1) |
|
|
|
self_attention_outputs = self.attention( |
|
modulate(self.layernorm_before(hidden_states), shift_msa, scale_msa), |
|
head_mask, |
|
output_attentions=output_attentions, |
|
) |
|
attention_output = self_attention_outputs[0] |
|
outputs = self_attention_outputs[1:] |
|
|
|
|
|
hidden_states = attention_output + hidden_states |
|
|
|
|
|
layer_output = modulate(self.layernorm_after(hidden_states), shift_mlp, scale_mlp) |
|
layer_output = self.intermediate(layer_output) |
|
|
|
|
|
layer_output = self.output(layer_output, hidden_states) |
|
|
|
outputs = (layer_output,) + outputs |
|
|
|
return outputs |
|
|
|
|
|
class ViTEncoder(nn.Module): |
|
def __init__(self, config: ViTConfig) -> None: |
|
super().__init__() |
|
self.config = config |
|
self.layer = nn.ModuleList([ViTLayer(config) for _ in range(config.num_hidden_layers)]) |
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
adaln_input: torch.Tensor = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: bool = False, |
|
output_hidden_states: bool = False, |
|
return_dict: bool = True, |
|
) -> Union[tuple, BaseModelOutput]: |
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attentions = () if output_attentions else None |
|
|
|
for i, layer_module in enumerate(self.layer): |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
layer_head_mask = head_mask[i] if head_mask is not None else None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
layer_module.__call__, |
|
hidden_states, |
|
adaln_input, |
|
layer_head_mask, |
|
output_attentions, |
|
) |
|
else: |
|
layer_outputs = layer_module(hidden_states, adaln_input, layer_head_mask, output_attentions) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + (layer_outputs[1],) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) |
|
return BaseModelOutput( |
|
last_hidden_state=hidden_states, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
) |
|
|
|
|
|
class ViTPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = ViTConfig |
|
base_model_prefix = "vit" |
|
main_input_name = "pixel_values" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["ViTEmbeddings", "ViTLayer"] |
|
|
|
def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: |
|
"""Initialize the weights""" |
|
if isinstance(module, (nn.Linear, nn.Conv2d)): |
|
|
|
|
|
module.weight.data = nn.init.trunc_normal_( |
|
module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range |
|
).to(module.weight.dtype) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
elif isinstance(module, ViTEmbeddings): |
|
module.position_embeddings.data = nn.init.trunc_normal_( |
|
module.position_embeddings.data.to(torch.float32), |
|
mean=0.0, |
|
std=self.config.initializer_range, |
|
).to(module.position_embeddings.dtype) |
|
|
|
module.cls_token.data = nn.init.trunc_normal_( |
|
module.cls_token.data.to(torch.float32), |
|
mean=0.0, |
|
std=self.config.initializer_range, |
|
).to(module.cls_token.dtype) |
|
|
|
|
|
class ViTModel(ViTPreTrainedModel): |
|
def __init__(self, config: ViTConfig, add_pooling_layer: bool = True, use_mask_token: bool = False): |
|
super().__init__(config) |
|
self.config = config |
|
|
|
self.embeddings = ViTEmbeddings(config, use_mask_token=use_mask_token) |
|
self.encoder = ViTEncoder(config) |
|
|
|
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
self.pooler = ViTPooler(config) if add_pooling_layer else None |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self) -> ViTPatchEmbeddings: |
|
return self.embeddings.patch_embeddings |
|
|
|
def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None: |
|
""" |
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base |
|
class PreTrainedModel |
|
""" |
|
for layer, heads in heads_to_prune.items(): |
|
self.encoder.layer[layer].attention.prune_heads(heads) |
|
|
|
def forward( |
|
self, |
|
pixel_values: Optional[torch.Tensor] = None, |
|
adaln_input: Optional[torch.Tensor] = None, |
|
bool_masked_pos: Optional[torch.BoolTensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
interpolate_pos_encoding: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPooling]: |
|
r""" |
|
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*): |
|
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). |
|
""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if pixel_values is None: |
|
raise ValueError("You have to specify pixel_values") |
|
|
|
|
|
|
|
|
|
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) |
|
|
|
|
|
expected_dtype = self.embeddings.patch_embeddings.projection.weight.dtype |
|
if pixel_values.dtype != expected_dtype: |
|
pixel_values = pixel_values.to(expected_dtype) |
|
|
|
embedding_output = self.embeddings( |
|
pixel_values, bool_masked_pos=bool_masked_pos, interpolate_pos_encoding=interpolate_pos_encoding |
|
) |
|
|
|
encoder_outputs = self.encoder( |
|
embedding_output, |
|
adaln_input=adaln_input, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
sequence_output = encoder_outputs[0] |
|
sequence_output = self.layernorm(sequence_output) |
|
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None |
|
|
|
if not return_dict: |
|
head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,) |
|
return head_outputs + encoder_outputs[1:] |
|
|
|
return BaseModelOutputWithPooling( |
|
last_hidden_state=sequence_output, |
|
pooler_output=pooled_output, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
) |
|
|
|
|
|
class ViTPooler(nn.Module): |
|
def __init__(self, config: ViTConfig): |
|
super().__init__() |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size) |
|
self.activation = nn.Tanh() |
|
|
|
def forward(self, hidden_states): |
|
|
|
|
|
first_token_tensor = hidden_states[:, 0] |
|
pooled_output = self.dense(first_token_tensor) |
|
pooled_output = self.activation(pooled_output) |
|
return pooled_output |