|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import nvdiffrast.torch as dr |
|
from einops import rearrange, repeat |
|
|
|
from .encoder.dino_wrapper import DinoWrapper |
|
from .decoder.transformer import TriplaneTransformer |
|
from .renderer.synthesizer_mesh import TriplaneSynthesizer |
|
from .geometry.camera.perspective_camera import PerspectiveCamera |
|
from .geometry.render.neural_render import NeuralRender |
|
from .geometry.rep_3d.flexicubes_geometry import FlexiCubesGeometry |
|
from ..utils.mesh_util import xatlas_uvmap |
|
|
|
|
|
class InstantMesh(nn.Module): |
|
""" |
|
Full model of the large reconstruction model. |
|
""" |
|
def __init__( |
|
self, |
|
encoder_freeze: bool = False, |
|
encoder_model_name: str = 'facebook/dino-vitb16', |
|
encoder_feat_dim: int = 768, |
|
transformer_dim: int = 1024, |
|
transformer_layers: int = 16, |
|
transformer_heads: int = 16, |
|
triplane_low_res: int = 32, |
|
triplane_high_res: int = 64, |
|
triplane_dim: int = 80, |
|
rendering_samples_per_ray: int = 128, |
|
grid_res: int = 128, |
|
grid_scale: float = 2.0, |
|
): |
|
super().__init__() |
|
|
|
|
|
self.grid_res = grid_res |
|
self.grid_scale = grid_scale |
|
self.deformation_multiplier = 4.0 |
|
|
|
|
|
self.encoder = DinoWrapper( |
|
model_name=encoder_model_name, |
|
freeze=encoder_freeze, |
|
) |
|
|
|
self.transformer = TriplaneTransformer( |
|
inner_dim=transformer_dim, |
|
num_layers=transformer_layers, |
|
num_heads=transformer_heads, |
|
image_feat_dim=encoder_feat_dim, |
|
triplane_low_res=triplane_low_res, |
|
triplane_high_res=triplane_high_res, |
|
triplane_dim=triplane_dim, |
|
) |
|
|
|
self.synthesizer = TriplaneSynthesizer( |
|
triplane_dim=triplane_dim, |
|
samples_per_ray=rendering_samples_per_ray, |
|
) |
|
|
|
def init_flexicubes_geometry(self, device, fovy=50.0, use_renderer=True): |
|
camera = PerspectiveCamera(fovy=fovy, device=device) |
|
if use_renderer: |
|
renderer = NeuralRender(device, camera_model=camera) |
|
else: |
|
renderer = None |
|
self.geometry = FlexiCubesGeometry( |
|
grid_res=self.grid_res, |
|
scale=self.grid_scale, |
|
renderer=renderer, |
|
render_type='neural_render', |
|
device=device, |
|
) |
|
|
|
def forward_planes(self, images, cameras): |
|
|
|
|
|
B = images.shape[0] |
|
|
|
|
|
image_feats = self.encoder(images, cameras) |
|
image_feats = rearrange(image_feats, '(b v) l d -> b (v l) d', b=B) |
|
|
|
|
|
planes = self.transformer(image_feats) |
|
|
|
return planes |
|
|
|
def get_sdf_deformation_prediction(self, planes): |
|
''' |
|
Predict SDF and deformation for tetrahedron vertices |
|
:param planes: triplane feature map for the geometry |
|
''' |
|
init_position = self.geometry.verts.unsqueeze(0).expand(planes.shape[0], -1, -1) |
|
|
|
|
|
sdf, deformation, weight = torch.utils.checkpoint.checkpoint( |
|
self.synthesizer.get_geometry_prediction, |
|
planes, |
|
init_position, |
|
self.geometry.indices, |
|
use_reentrant=False, |
|
) |
|
|
|
|
|
deformation = 1.0 / (self.grid_res * self.deformation_multiplier) * torch.tanh(deformation) |
|
sdf_reg_loss = torch.zeros(sdf.shape[0], device=sdf.device, dtype=torch.float32) |
|
|
|
|
|
|
|
sdf_bxnxnxn = sdf.reshape((sdf.shape[0], self.grid_res + 1, self.grid_res + 1, self.grid_res + 1)) |
|
sdf_less_boundary = sdf_bxnxnxn[:, 1:-1, 1:-1, 1:-1].reshape(sdf.shape[0], -1) |
|
pos_shape = torch.sum((sdf_less_boundary > 0).int(), dim=-1) |
|
neg_shape = torch.sum((sdf_less_boundary < 0).int(), dim=-1) |
|
zero_surface = torch.bitwise_or(pos_shape == 0, neg_shape == 0) |
|
if torch.sum(zero_surface).item() > 0: |
|
update_sdf = torch.zeros_like(sdf[0:1]) |
|
max_sdf = sdf.max() |
|
min_sdf = sdf.min() |
|
update_sdf[:, self.geometry.center_indices] += (1.0 - min_sdf) |
|
update_sdf[:, self.geometry.boundary_indices] += (-1 - max_sdf) |
|
new_sdf = torch.zeros_like(sdf) |
|
for i_batch in range(zero_surface.shape[0]): |
|
if zero_surface[i_batch]: |
|
new_sdf[i_batch:i_batch + 1] += update_sdf |
|
update_mask = (new_sdf == 0).float() |
|
|
|
sdf_reg_loss = torch.abs(sdf).mean(dim=-1).mean(dim=-1) |
|
sdf_reg_loss = sdf_reg_loss * zero_surface.float() |
|
sdf = sdf * update_mask + new_sdf * (1 - update_mask) |
|
|
|
|
|
final_sdf = [] |
|
final_def = [] |
|
for i_batch in range(zero_surface.shape[0]): |
|
if zero_surface[i_batch]: |
|
final_sdf.append(sdf[i_batch: i_batch + 1].detach()) |
|
final_def.append(deformation[i_batch: i_batch + 1].detach()) |
|
else: |
|
final_sdf.append(sdf[i_batch: i_batch + 1]) |
|
final_def.append(deformation[i_batch: i_batch + 1]) |
|
sdf = torch.cat(final_sdf, dim=0) |
|
deformation = torch.cat(final_def, dim=0) |
|
return sdf, deformation, sdf_reg_loss, weight |
|
|
|
def get_geometry_prediction(self, planes=None): |
|
''' |
|
Function to generate mesh with give triplanes |
|
:param planes: triplane features |
|
''' |
|
|
|
sdf, deformation, sdf_reg_loss, weight = self.get_sdf_deformation_prediction(planes) |
|
v_deformed = self.geometry.verts.unsqueeze(dim=0).expand(sdf.shape[0], -1, -1) + deformation |
|
tets = self.geometry.indices |
|
n_batch = planes.shape[0] |
|
v_list = [] |
|
f_list = [] |
|
flexicubes_surface_reg_list = [] |
|
|
|
|
|
for i_batch in range(n_batch): |
|
verts, faces, flexicubes_surface_reg = self.geometry.get_mesh( |
|
v_deformed[i_batch], |
|
sdf[i_batch].squeeze(dim=-1), |
|
with_uv=False, |
|
indices=tets, |
|
weight_n=weight[i_batch].squeeze(dim=-1), |
|
is_training=self.training, |
|
) |
|
flexicubes_surface_reg_list.append(flexicubes_surface_reg) |
|
v_list.append(verts) |
|
f_list.append(faces) |
|
|
|
flexicubes_surface_reg = torch.cat(flexicubes_surface_reg_list).mean() |
|
flexicubes_weight_reg = (weight ** 2).mean() |
|
|
|
return v_list, f_list, sdf, deformation, v_deformed, (sdf_reg_loss, flexicubes_surface_reg, flexicubes_weight_reg) |
|
|
|
def get_texture_prediction(self, planes, tex_pos, hard_mask=None): |
|
''' |
|
Predict Texture given triplanes |
|
:param planes: the triplane feature map |
|
:param tex_pos: Position we want to query the texture field |
|
:param hard_mask: 2D silhoueete of the rendered image |
|
''' |
|
tex_pos = torch.cat(tex_pos, dim=0) |
|
if not hard_mask is None: |
|
tex_pos = tex_pos * hard_mask.float() |
|
batch_size = tex_pos.shape[0] |
|
tex_pos = tex_pos.reshape(batch_size, -1, 3) |
|
|
|
|
|
if hard_mask is not None: |
|
n_point_list = torch.sum(hard_mask.long().reshape(hard_mask.shape[0], -1), dim=-1) |
|
sample_tex_pose_list = [] |
|
max_point = n_point_list.max() |
|
expanded_hard_mask = hard_mask.reshape(batch_size, -1, 1).expand(-1, -1, 3) > 0.5 |
|
for i in range(tex_pos.shape[0]): |
|
tex_pos_one_shape = tex_pos[i][expanded_hard_mask[i]].reshape(1, -1, 3) |
|
if tex_pos_one_shape.shape[1] < max_point: |
|
tex_pos_one_shape = torch.cat( |
|
[tex_pos_one_shape, torch.zeros( |
|
1, max_point - tex_pos_one_shape.shape[1], 3, |
|
device=tex_pos_one_shape.device, dtype=torch.float32)], dim=1) |
|
sample_tex_pose_list.append(tex_pos_one_shape) |
|
tex_pos = torch.cat(sample_tex_pose_list, dim=0) |
|
|
|
tex_feat = torch.utils.checkpoint.checkpoint( |
|
self.synthesizer.get_texture_prediction, |
|
planes, |
|
tex_pos, |
|
use_reentrant=False, |
|
) |
|
|
|
if hard_mask is not None: |
|
final_tex_feat = torch.zeros( |
|
planes.shape[0], hard_mask.shape[1] * hard_mask.shape[2], tex_feat.shape[-1], device=tex_feat.device) |
|
expanded_hard_mask = hard_mask.reshape(hard_mask.shape[0], -1, 1).expand(-1, -1, final_tex_feat.shape[-1]) > 0.5 |
|
for i in range(planes.shape[0]): |
|
final_tex_feat[i][expanded_hard_mask[i]] = tex_feat[i][:n_point_list[i]].reshape(-1) |
|
tex_feat = final_tex_feat |
|
|
|
return tex_feat.reshape(planes.shape[0], hard_mask.shape[1], hard_mask.shape[2], tex_feat.shape[-1]) |
|
|
|
def render_mesh(self, mesh_v, mesh_f, cam_mv, render_size=256): |
|
''' |
|
Function to render a generated mesh with nvdiffrast |
|
:param mesh_v: List of vertices for the mesh |
|
:param mesh_f: List of faces for the mesh |
|
:param cam_mv: 4x4 rotation matrix |
|
:return: |
|
''' |
|
return_value_list = [] |
|
for i_mesh in range(len(mesh_v)): |
|
return_value = self.geometry.render_mesh( |
|
mesh_v[i_mesh], |
|
mesh_f[i_mesh].int(), |
|
cam_mv[i_mesh], |
|
resolution=render_size, |
|
hierarchical_mask=False |
|
) |
|
return_value_list.append(return_value) |
|
|
|
return_keys = return_value_list[0].keys() |
|
return_value = dict() |
|
for k in return_keys: |
|
value = [v[k] for v in return_value_list] |
|
return_value[k] = value |
|
|
|
mask = torch.cat(return_value['mask'], dim=0) |
|
hard_mask = torch.cat(return_value['hard_mask'], dim=0) |
|
tex_pos = return_value['tex_pos'] |
|
depth = torch.cat(return_value['depth'], dim=0) |
|
normal = torch.cat(return_value['normal'], dim=0) |
|
return mask, hard_mask, tex_pos, depth, normal |
|
|
|
def forward_geometry(self, planes, render_cameras, render_size=256): |
|
''' |
|
Main function of our Generator. It first generate 3D mesh, then render it into 2D image |
|
with given `render_cameras`. |
|
:param planes: triplane features |
|
:param render_cameras: cameras to render generated 3D shape |
|
''' |
|
B, NV = render_cameras.shape[:2] |
|
|
|
|
|
mesh_v, mesh_f, sdf, deformation, v_deformed, sdf_reg_loss = self.get_geometry_prediction(planes) |
|
|
|
|
|
cam_mv = render_cameras |
|
run_n_view = cam_mv.shape[1] |
|
antilias_mask, hard_mask, tex_pos, depth, normal = self.render_mesh(mesh_v, mesh_f, cam_mv, render_size=render_size) |
|
|
|
tex_hard_mask = hard_mask |
|
tex_pos = [torch.cat([pos[i_view:i_view + 1] for i_view in range(run_n_view)], dim=2) for pos in tex_pos] |
|
tex_hard_mask = torch.cat( |
|
[torch.cat( |
|
[tex_hard_mask[i * run_n_view + i_view: i * run_n_view + i_view + 1] |
|
for i_view in range(run_n_view)], dim=2) |
|
for i in range(planes.shape[0])], dim=0) |
|
|
|
|
|
tex_feat = self.get_texture_prediction(planes, tex_pos, tex_hard_mask) |
|
background_feature = torch.ones_like(tex_feat) |
|
|
|
|
|
img_feat = tex_feat * tex_hard_mask + background_feature * (1 - tex_hard_mask) |
|
|
|
|
|
img_feat = torch.cat( |
|
[torch.cat( |
|
[img_feat[i:i + 1, :, render_size * i_view: render_size * (i_view + 1)] |
|
for i_view in range(run_n_view)], dim=0) for i in range(len(tex_pos))], dim=0) |
|
|
|
img = img_feat.clamp(0, 1).permute(0, 3, 1, 2).unflatten(0, (B, NV)) |
|
antilias_mask = antilias_mask.permute(0, 3, 1, 2).unflatten(0, (B, NV)) |
|
depth = -depth.permute(0, 3, 1, 2).unflatten(0, (B, NV)) |
|
normal = normal.permute(0, 3, 1, 2).unflatten(0, (B, NV)) |
|
|
|
out = { |
|
'img': img, |
|
'mask': antilias_mask, |
|
'depth': depth, |
|
'normal': normal, |
|
'sdf': sdf, |
|
'mesh_v': mesh_v, |
|
'mesh_f': mesh_f, |
|
'sdf_reg_loss': sdf_reg_loss, |
|
} |
|
return out |
|
|
|
def forward(self, images, cameras, render_cameras, render_size: int): |
|
|
|
|
|
|
|
|
|
B, M = render_cameras.shape[:2] |
|
|
|
planes = self.forward_planes(images, cameras) |
|
out = self.forward_geometry(planes, render_cameras, render_size=render_size) |
|
|
|
return { |
|
'planes': planes, |
|
**out |
|
} |
|
|
|
def extract_mesh( |
|
self, |
|
planes: torch.Tensor, |
|
use_texture_map: bool = False, |
|
texture_resolution: int = 1024, |
|
**kwargs, |
|
): |
|
''' |
|
Extract a 3D mesh from FlexiCubes. Only support batch_size 1. |
|
:param planes: triplane features |
|
:param use_texture_map: use texture map or vertex color |
|
:param texture_resolution: the resolution of texure map |
|
''' |
|
assert planes.shape[0] == 1 |
|
device = planes.device |
|
|
|
|
|
mesh_v, mesh_f, sdf, deformation, v_deformed, sdf_reg_loss = self.get_geometry_prediction(planes) |
|
vertices, faces = mesh_v[0], mesh_f[0] |
|
|
|
if not use_texture_map: |
|
|
|
vertices_tensor = vertices.unsqueeze(0) |
|
vertices_colors = self.synthesizer.get_texture_prediction( |
|
planes, vertices_tensor).clamp(0, 1).squeeze(0).cpu().numpy() |
|
vertices_colors = (vertices_colors * 255).astype(np.uint8) |
|
|
|
return vertices.cpu().numpy(), faces.cpu().numpy(), vertices_colors |
|
|
|
|
|
ctx = dr.RasterizeCudaContext(device=device) |
|
uvs, mesh_tex_idx, gb_pos, tex_hard_mask = xatlas_uvmap( |
|
self.geometry.renderer.ctx, vertices, faces, resolution=texture_resolution) |
|
tex_hard_mask = tex_hard_mask.float() |
|
|
|
|
|
tex_feat = self.get_texture_prediction( |
|
planes, [gb_pos], tex_hard_mask) |
|
background_feature = torch.zeros_like(tex_feat) |
|
img_feat = torch.lerp(background_feature, tex_feat, tex_hard_mask) |
|
texture_map = img_feat.permute(0, 3, 1, 2).squeeze(0) |
|
|
|
return vertices, faces, uvs, mesh_tex_idx, texture_map |