|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import numpy as np |
|
import os |
|
from . import Geometry |
|
from .flexicubes import FlexiCubes |
|
from .dmtet import sdf_reg_loss_batch |
|
import torch.nn.functional as F |
|
|
|
def get_center_boundary_index(grid_res, device): |
|
v = torch.zeros((grid_res + 1, grid_res + 1, grid_res + 1), dtype=torch.bool, device=device) |
|
v[grid_res // 2 + 1, grid_res // 2 + 1, grid_res // 2 + 1] = True |
|
center_indices = torch.nonzero(v.reshape(-1)) |
|
|
|
v[grid_res // 2 + 1, grid_res // 2 + 1, grid_res // 2 + 1] = False |
|
v[:2, ...] = True |
|
v[-2:, ...] = True |
|
v[:, :2, ...] = True |
|
v[:, -2:, ...] = True |
|
v[:, :, :2] = True |
|
v[:, :, -2:] = True |
|
boundary_indices = torch.nonzero(v.reshape(-1)) |
|
return center_indices, boundary_indices |
|
|
|
|
|
|
|
|
|
class FlexiCubesGeometry(Geometry): |
|
def __init__( |
|
self, grid_res=64, scale=2.0, device='cuda', renderer=None, |
|
render_type='neural_render', args=None): |
|
super(FlexiCubesGeometry, self).__init__() |
|
self.grid_res = grid_res |
|
self.device = device |
|
self.args = args |
|
self.fc = FlexiCubes(device, weight_scale=0.5) |
|
self.verts, self.indices = self.fc.construct_voxel_grid(grid_res) |
|
if isinstance(scale, list): |
|
self.verts[:, 0] = self.verts[:, 0] * scale[0] |
|
self.verts[:, 1] = self.verts[:, 1] * scale[1] |
|
self.verts[:, 2] = self.verts[:, 2] * scale[1] |
|
else: |
|
self.verts = self.verts * scale |
|
|
|
all_edges = self.indices[:, self.fc.cube_edges].reshape(-1, 2) |
|
self.all_edges = torch.unique(all_edges, dim=0) |
|
|
|
|
|
self.center_indices, self.boundary_indices = get_center_boundary_index(self.grid_res, device) |
|
self.renderer = renderer |
|
self.render_type = render_type |
|
|
|
def getAABB(self): |
|
return torch.min(self.verts, dim=0).values, torch.max(self.verts, dim=0).values |
|
|
|
def get_mesh(self, v_deformed_nx3, sdf_n, weight_n=None, with_uv=False, indices=None, is_training=False): |
|
if indices is None: |
|
indices = self.indices |
|
|
|
verts, faces, v_reg_loss = self.fc(v_deformed_nx3, sdf_n, indices, self.grid_res, |
|
beta_fx12=weight_n[:, :12], alpha_fx8=weight_n[:, 12:20], |
|
gamma_f=weight_n[:, 20], training=is_training |
|
) |
|
return verts, faces, v_reg_loss |
|
|
|
|
|
def render_mesh(self, mesh_v_nx3, mesh_f_fx3, camera_mv_bx4x4, resolution=256, hierarchical_mask=False): |
|
return_value = dict() |
|
if self.render_type == 'neural_render': |
|
tex_pos, mask, hard_mask, rast, v_pos_clip, mask_pyramid, depth, normal = self.renderer.render_mesh( |
|
mesh_v_nx3.unsqueeze(dim=0), |
|
mesh_f_fx3.int(), |
|
camera_mv_bx4x4, |
|
mesh_v_nx3.unsqueeze(dim=0), |
|
resolution=resolution, |
|
device=self.device, |
|
hierarchical_mask=hierarchical_mask |
|
) |
|
|
|
return_value['tex_pos'] = tex_pos |
|
return_value['mask'] = mask |
|
return_value['hard_mask'] = hard_mask |
|
return_value['rast'] = rast |
|
return_value['v_pos_clip'] = v_pos_clip |
|
return_value['mask_pyramid'] = mask_pyramid |
|
return_value['depth'] = depth |
|
return_value['normal'] = normal |
|
else: |
|
raise NotImplementedError |
|
|
|
return return_value |
|
|
|
def render(self, v_deformed_bxnx3=None, sdf_bxn=None, camera_mv_bxnviewx4x4=None, resolution=256): |
|
|
|
v_list = [] |
|
f_list = [] |
|
n_batch = v_deformed_bxnx3.shape[0] |
|
all_render_output = [] |
|
for i_batch in range(n_batch): |
|
verts_nx3, faces_fx3 = self.get_mesh(v_deformed_bxnx3[i_batch], sdf_bxn[i_batch]) |
|
v_list.append(verts_nx3) |
|
f_list.append(faces_fx3) |
|
render_output = self.render_mesh(verts_nx3, faces_fx3, camera_mv_bxnviewx4x4[i_batch], resolution) |
|
all_render_output.append(render_output) |
|
|
|
|
|
return_keys = all_render_output[0].keys() |
|
return_value = dict() |
|
for k in return_keys: |
|
value = [v[k] for v in all_render_output] |
|
return_value[k] = value |
|
|
|
return return_value |
|
|