Vexa's picture
Duplicate from pivich/sovits-new
d5d7329
from __future__ import annotations
from copy import deepcopy
from logging import getLogger
from pathlib import Path
from typing import Any, Callable, Iterable, Literal
import attrs
import librosa
import numpy as np
import torch
from cm_time import timer
from numpy import dtype, float32, ndarray
import so_vits_svc_fork.f0
from so_vits_svc_fork import cluster, utils
from ..modules.synthesizers import SynthesizerTrn
from ..utils import get_optimal_device
LOG = getLogger(__name__)
def pad_array(array_, target_length: int):
current_length = array_.shape[0]
if current_length >= target_length:
return array_[
(current_length - target_length)
// 2 : (current_length - target_length)
// 2
+ target_length,
...,
]
else:
pad_width = target_length - current_length
pad_left = pad_width // 2
pad_right = pad_width - pad_left
padded_arr = np.pad(
array_, (pad_left, pad_right), "constant", constant_values=(0, 0)
)
return padded_arr
@attrs.frozen(kw_only=True)
class Chunk:
is_speech: bool
audio: ndarray[Any, dtype[float32]]
start: int
end: int
@property
def duration(self) -> float32:
# return self.end - self.start
return float32(self.audio.shape[0])
def __repr__(self) -> str:
return f"Chunk(Speech: {self.is_speech}, {self.duration})"
def split_silence(
audio: ndarray[Any, dtype[float32]],
top_db: int = 40,
ref: float | Callable[[ndarray[Any, dtype[float32]]], float] = 1,
frame_length: int = 2048,
hop_length: int = 512,
aggregate: Callable[[ndarray[Any, dtype[float32]]], float] = np.mean,
max_chunk_length: int = 0,
) -> Iterable[Chunk]:
non_silence_indices = librosa.effects.split(
audio,
top_db=top_db,
ref=ref,
frame_length=frame_length,
hop_length=hop_length,
aggregate=aggregate,
)
last_end = 0
for start, end in non_silence_indices:
if start != last_end:
yield Chunk(
is_speech=False, audio=audio[last_end:start], start=last_end, end=start
)
while max_chunk_length > 0 and end - start > max_chunk_length:
yield Chunk(
is_speech=True,
audio=audio[start : start + max_chunk_length],
start=start,
end=start + max_chunk_length,
)
start += max_chunk_length
if end - start > 0:
yield Chunk(is_speech=True, audio=audio[start:end], start=start, end=end)
last_end = end
if last_end != len(audio):
yield Chunk(
is_speech=False, audio=audio[last_end:], start=last_end, end=len(audio)
)
class Svc:
def __init__(
self,
*,
net_g_path: Path | str,
config_path: Path | str,
device: torch.device | str | None = None,
cluster_model_path: Path | str | None = None,
half: bool = False,
):
self.net_g_path = net_g_path
if device is None:
self.device = (get_optimal_device(),)
else:
self.device = torch.device(device)
self.hps = utils.get_hparams(config_path)
self.target_sample = self.hps.data.sampling_rate
self.hop_size = self.hps.data.hop_length
self.spk2id = self.hps.spk
self.hubert_model = utils.get_hubert_model(
self.device, self.hps.data.get("contentvec_final_proj", True)
)
self.dtype = torch.float16 if half else torch.float32
self.contentvec_final_proj = self.hps.data.__dict__.get(
"contentvec_final_proj", True
)
self.load_model()
if cluster_model_path is not None and Path(cluster_model_path).exists():
self.cluster_model = cluster.get_cluster_model(cluster_model_path)
def load_model(self):
self.net_g = SynthesizerTrn(
self.hps.data.filter_length // 2 + 1,
self.hps.train.segment_size // self.hps.data.hop_length,
**self.hps.model,
)
_ = utils.load_checkpoint(self.net_g_path, self.net_g, None)
_ = self.net_g.eval()
for m in self.net_g.modules():
utils.remove_weight_norm_if_exists(m)
_ = self.net_g.to(self.device, dtype=self.dtype)
self.net_g = self.net_g
def get_unit_f0(
self,
audio: ndarray[Any, dtype[float32]],
tran: int,
cluster_infer_ratio: float,
speaker: int | str,
f0_method: Literal[
"crepe", "crepe-tiny", "parselmouth", "dio", "harvest"
] = "dio",
):
f0 = so_vits_svc_fork.f0.compute_f0(
audio,
sampling_rate=self.target_sample,
hop_length=self.hop_size,
method=f0_method,
)
f0, uv = so_vits_svc_fork.f0.interpolate_f0(f0)
f0 = torch.as_tensor(f0, dtype=self.dtype, device=self.device)
uv = torch.as_tensor(uv, dtype=self.dtype, device=self.device)
f0 = f0 * 2 ** (tran / 12)
f0 = f0.unsqueeze(0)
uv = uv.unsqueeze(0)
c = utils.get_content(
self.hubert_model,
audio,
self.device,
self.target_sample,
self.contentvec_final_proj,
).to(self.dtype)
c = utils.repeat_expand_2d(c.squeeze(0), f0.shape[1])
if cluster_infer_ratio != 0:
cluster_c = cluster.get_cluster_center_result(
self.cluster_model, c.cpu().numpy().T, speaker
).T
cluster_c = torch.FloatTensor(cluster_c).to(self.device)
c = cluster_infer_ratio * cluster_c + (1 - cluster_infer_ratio) * c
c = c.unsqueeze(0)
return c, f0, uv
def infer(
self,
speaker: int | str,
transpose: int,
audio: ndarray[Any, dtype[float32]],
cluster_infer_ratio: float = 0,
auto_predict_f0: bool = False,
noise_scale: float = 0.4,
f0_method: Literal[
"crepe", "crepe-tiny", "parselmouth", "dio", "harvest"
] = "dio",
) -> tuple[torch.Tensor, int]:
audio = audio.astype(np.float32)
# get speaker id
if isinstance(speaker, int):
if len(self.spk2id.__dict__) >= speaker:
speaker_id = speaker
else:
raise ValueError(
f"Speaker id {speaker} >= number of speakers {len(self.spk2id.__dict__)}"
)
else:
if speaker in self.spk2id.__dict__:
speaker_id = self.spk2id.__dict__[speaker]
else:
LOG.warning(f"Speaker {speaker} is not found. Use speaker 0 instead.")
speaker_id = 0
speaker_candidates = list(
filter(lambda x: x[1] == speaker_id, self.spk2id.__dict__.items())
)
if len(speaker_candidates) > 1:
raise ValueError(
f"Speaker_id {speaker_id} is not unique. Candidates: {speaker_candidates}"
)
elif len(speaker_candidates) == 0:
raise ValueError(f"Speaker_id {speaker_id} is not found.")
speaker = speaker_candidates[0][0]
sid = torch.LongTensor([int(speaker_id)]).to(self.device).unsqueeze(0)
# get unit f0
c, f0, uv = self.get_unit_f0(
audio, transpose, cluster_infer_ratio, speaker, f0_method
)
# inference
with torch.no_grad():
with timer() as t:
audio = self.net_g.infer(
c,
f0=f0,
g=sid,
uv=uv,
predict_f0=auto_predict_f0,
noice_scale=noise_scale,
)[0, 0].data.float()
audio_duration = audio.shape[-1] / self.target_sample
LOG.info(
f"Inference time: {t.elapsed:.2f}s, RTF: {t.elapsed / audio_duration:.2f}"
)
torch.cuda.empty_cache()
return audio, audio.shape[-1]
def infer_silence(
self,
audio: np.ndarray[Any, np.dtype[np.float32]],
*,
# svc config
speaker: int | str,
transpose: int = 0,
auto_predict_f0: bool = False,
cluster_infer_ratio: float = 0,
noise_scale: float = 0.4,
f0_method: Literal[
"crepe", "crepe-tiny", "parselmouth", "dio", "harvest"
] = "dio",
# slice config
db_thresh: int = -40,
pad_seconds: float = 0.5,
chunk_seconds: float = 0.5,
absolute_thresh: bool = False,
max_chunk_seconds: float = 40,
# fade_seconds: float = 0.0,
) -> np.ndarray[Any, np.dtype[np.float32]]:
sr = self.target_sample
result_audio = np.array([], dtype=np.float32)
chunk_length_min = chunk_length_min = (
int(
min(
sr / so_vits_svc_fork.f0.f0_min * 20 + 1,
chunk_seconds * sr,
)
)
// 2
)
for chunk in split_silence(
audio,
top_db=-db_thresh,
frame_length=chunk_length_min * 2,
hop_length=chunk_length_min,
ref=1 if absolute_thresh else np.max,
max_chunk_length=int(max_chunk_seconds * sr),
):
LOG.info(f"Chunk: {chunk}")
if not chunk.is_speech:
audio_chunk_infer = np.zeros_like(chunk.audio)
else:
# pad
pad_len = int(sr * pad_seconds)
audio_chunk_pad = np.concatenate(
[
np.zeros([pad_len], dtype=np.float32),
chunk.audio,
np.zeros([pad_len], dtype=np.float32),
]
)
audio_chunk_pad_infer_tensor, _ = self.infer(
speaker,
transpose,
audio_chunk_pad,
cluster_infer_ratio=cluster_infer_ratio,
auto_predict_f0=auto_predict_f0,
noise_scale=noise_scale,
f0_method=f0_method,
)
audio_chunk_pad_infer = audio_chunk_pad_infer_tensor.cpu().numpy()
pad_len = int(self.target_sample * pad_seconds)
cut_len_2 = (len(audio_chunk_pad_infer) - len(chunk.audio)) // 2
audio_chunk_infer = audio_chunk_pad_infer[
cut_len_2 : cut_len_2 + len(chunk.audio)
]
# add fade
# fade_len = int(self.target_sample * fade_seconds)
# _audio[:fade_len] = _audio[:fade_len] * np.linspace(0, 1, fade_len)
# _audio[-fade_len:] = _audio[-fade_len:] * np.linspace(1, 0, fade_len)
# empty cache
torch.cuda.empty_cache()
result_audio = np.concatenate([result_audio, audio_chunk_infer])
result_audio = result_audio[: audio.shape[0]]
return result_audio
def sola_crossfade(
first: ndarray[Any, dtype[float32]],
second: ndarray[Any, dtype[float32]],
crossfade_len: int,
sola_search_len: int,
) -> ndarray[Any, dtype[float32]]:
cor_nom = np.convolve(
second[: sola_search_len + crossfade_len],
np.flip(first[-crossfade_len:]),
"valid",
)
cor_den = np.sqrt(
np.convolve(
second[: sola_search_len + crossfade_len] ** 2,
np.ones(crossfade_len),
"valid",
)
+ 1e-8
)
sola_shift = np.argmax(cor_nom / cor_den)
LOG.info(f"SOLA shift: {sola_shift}")
second = second[sola_shift : sola_shift + len(second) - sola_search_len]
return np.concatenate(
[
first[:-crossfade_len],
first[-crossfade_len:] * np.linspace(1, 0, crossfade_len)
+ second[:crossfade_len] * np.linspace(0, 1, crossfade_len),
second[crossfade_len:],
]
)
class Crossfader:
def __init__(
self,
*,
additional_infer_before_len: int,
additional_infer_after_len: int,
crossfade_len: int,
sola_search_len: int = 384,
) -> None:
if additional_infer_before_len < 0:
raise ValueError("additional_infer_len must be >= 0")
if crossfade_len < 0:
raise ValueError("crossfade_len must be >= 0")
if additional_infer_after_len < 0:
raise ValueError("additional_infer_len must be >= 0")
if additional_infer_before_len < 0:
raise ValueError("additional_infer_len must be >= 0")
self.additional_infer_before_len = additional_infer_before_len
self.additional_infer_after_len = additional_infer_after_len
self.crossfade_len = crossfade_len
self.sola_search_len = sola_search_len
self.last_input_left = np.zeros(
sola_search_len
+ crossfade_len
+ additional_infer_before_len
+ additional_infer_after_len,
dtype=np.float32,
)
self.last_infered_left = np.zeros(crossfade_len, dtype=np.float32)
def process(
self, input_audio: ndarray[Any, dtype[float32]], *args, **kwargs: Any
) -> ndarray[Any, dtype[float32]]:
"""
chunks : ■■■■■■□□□□□□
add last input:□■■■■■■
■□□□□□□
infer :□■■■■■■
■□□□□□□
crossfade :▲■■■■■
▲□□□□□
"""
# check input
if input_audio.ndim != 1:
raise ValueError("Input audio must be 1-dimensional.")
if (
input_audio.shape[0] + self.additional_infer_before_len
<= self.crossfade_len
):
raise ValueError(
f"Input audio length ({input_audio.shape[0]}) + additional_infer_len ({self.additional_infer_before_len}) must be greater than crossfade_len ({self.crossfade_len})."
)
input_audio = input_audio.astype(np.float32)
input_audio_len = len(input_audio)
# concat last input and infer
input_audio_concat = np.concatenate([self.last_input_left, input_audio])
del input_audio
pad_len = 0
if pad_len:
infer_audio_concat = self.infer(
np.pad(input_audio_concat, (pad_len, pad_len), mode="reflect"),
*args,
**kwargs,
)[pad_len:-pad_len]
else:
infer_audio_concat = self.infer(input_audio_concat, *args, **kwargs)
# debug SOLA (using copy synthesis with a random shift)
"""
rs = int(np.random.uniform(-200,200))
LOG.info(f"Debug random shift: {rs}")
infer_audio_concat = np.roll(input_audio_concat, rs)
"""
if len(infer_audio_concat) != len(input_audio_concat):
raise ValueError(
f"Inferred audio length ({len(infer_audio_concat)}) should be equal to input audio length ({len(input_audio_concat)})."
)
infer_audio_to_use = infer_audio_concat[
-(
self.sola_search_len
+ self.crossfade_len
+ input_audio_len
+ self.additional_infer_after_len
) : -self.additional_infer_after_len
]
assert (
len(infer_audio_to_use)
== input_audio_len + self.sola_search_len + self.crossfade_len
), f"{len(infer_audio_to_use)} != {input_audio_len + self.sola_search_len + self.cross_fade_len}"
_audio = sola_crossfade(
self.last_infered_left,
infer_audio_to_use,
self.crossfade_len,
self.sola_search_len,
)
result_audio = _audio[: -self.crossfade_len]
assert (
len(result_audio) == input_audio_len
), f"{len(result_audio)} != {input_audio_len}"
# update last input and inferred
self.last_input_left = input_audio_concat[
-(
self.sola_search_len
+ self.crossfade_len
+ self.additional_infer_before_len
+ self.additional_infer_after_len
) :
]
self.last_infered_left = _audio[-self.crossfade_len :]
return result_audio
def infer(
self, input_audio: ndarray[Any, dtype[float32]]
) -> ndarray[Any, dtype[float32]]:
return input_audio
class RealtimeVC(Crossfader):
def __init__(
self,
*,
svc_model: Svc,
crossfade_len: int = 3840,
additional_infer_before_len: int = 7680,
additional_infer_after_len: int = 7680,
split: bool = True,
) -> None:
self.svc_model = svc_model
self.split = split
super().__init__(
crossfade_len=crossfade_len,
additional_infer_before_len=additional_infer_before_len,
additional_infer_after_len=additional_infer_after_len,
)
def process(
self,
input_audio: ndarray[Any, dtype[float32]],
*args: Any,
**kwargs: Any,
) -> ndarray[Any, dtype[float32]]:
return super().process(input_audio, *args, **kwargs)
def infer(
self,
input_audio: np.ndarray[Any, np.dtype[np.float32]],
# svc config
speaker: int | str,
transpose: int,
cluster_infer_ratio: float = 0,
auto_predict_f0: bool = False,
noise_scale: float = 0.4,
f0_method: Literal[
"crepe", "crepe-tiny", "parselmouth", "dio", "harvest"
] = "dio",
# slice config
db_thresh: int = -40,
pad_seconds: float = 0.5,
chunk_seconds: float = 0.5,
) -> ndarray[Any, dtype[float32]]:
# infer
if self.split:
return self.svc_model.infer_silence(
audio=input_audio,
speaker=speaker,
transpose=transpose,
cluster_infer_ratio=cluster_infer_ratio,
auto_predict_f0=auto_predict_f0,
noise_scale=noise_scale,
f0_method=f0_method,
db_thresh=db_thresh,
pad_seconds=pad_seconds,
chunk_seconds=chunk_seconds,
absolute_thresh=True,
)
else:
rms = np.sqrt(np.mean(input_audio**2))
min_rms = 10 ** (db_thresh / 20)
if rms < min_rms:
LOG.info(f"Skip silence: RMS={rms:.2f} < {min_rms:.2f}")
return np.zeros_like(input_audio)
else:
LOG.info(f"Start inference: RMS={rms:.2f} >= {min_rms:.2f}")
infered_audio_c, _ = self.svc_model.infer(
speaker=speaker,
transpose=transpose,
audio=input_audio,
cluster_infer_ratio=cluster_infer_ratio,
auto_predict_f0=auto_predict_f0,
noise_scale=noise_scale,
f0_method=f0_method,
)
return infered_audio_c.cpu().numpy()
class RealtimeVC2:
chunk_store: list[Chunk]
def __init__(self, svc_model: Svc) -> None:
self.input_audio_store = np.array([], dtype=np.float32)
self.chunk_store = []
self.svc_model = svc_model
def process(
self,
input_audio: np.ndarray[Any, np.dtype[np.float32]],
# svc config
speaker: int | str,
transpose: int,
cluster_infer_ratio: float = 0,
auto_predict_f0: bool = False,
noise_scale: float = 0.4,
f0_method: Literal[
"crepe", "crepe-tiny", "parselmouth", "dio", "harvest"
] = "dio",
# slice config
db_thresh: int = -40,
chunk_seconds: float = 0.5,
) -> ndarray[Any, dtype[float32]]:
def infer(audio: ndarray[Any, dtype[float32]]) -> ndarray[Any, dtype[float32]]:
infered_audio_c, _ = self.svc_model.infer(
speaker=speaker,
transpose=transpose,
audio=audio,
cluster_infer_ratio=cluster_infer_ratio,
auto_predict_f0=auto_predict_f0,
noise_scale=noise_scale,
f0_method=f0_method,
)
return infered_audio_c.cpu().numpy()
self.input_audio_store = np.concatenate([self.input_audio_store, input_audio])
LOG.info(f"input_audio_store: {self.input_audio_store.shape}")
sr = self.svc_model.target_sample
chunk_length_min = (
int(min(sr / so_vits_svc_fork.f0.f0_min * 20 + 1, chunk_seconds * sr)) // 2
)
LOG.info(f"Chunk length min: {chunk_length_min}")
chunk_list = list(
split_silence(
self.input_audio_store,
-db_thresh,
frame_length=chunk_length_min * 2,
hop_length=chunk_length_min,
ref=1, # use absolute threshold
)
)
assert len(chunk_list) > 0
LOG.info(f"Chunk list: {chunk_list}")
# do not infer LAST incomplete is_speech chunk and save to store
if chunk_list[-1].is_speech:
self.input_audio_store = chunk_list.pop().audio
else:
self.input_audio_store = np.array([], dtype=np.float32)
# infer complete is_speech chunk and save to store
self.chunk_store.extend(
[
attrs.evolve(c, audio=infer(c.audio) if c.is_speech else c.audio)
for c in chunk_list
]
)
# calculate lengths and determine compress rate
total_speech_len = sum(
[c.duration if c.is_speech else 0 for c in self.chunk_store]
)
total_silence_len = sum(
[c.duration if not c.is_speech else 0 for c in self.chunk_store]
)
input_audio_len = input_audio.shape[0]
silence_compress_rate = total_silence_len / max(
0, input_audio_len - total_speech_len
)
LOG.info(
f"Total speech len: {total_speech_len}, silence len: {total_silence_len}, silence compress rate: {silence_compress_rate}"
)
# generate output audio
output_audio = np.array([], dtype=np.float32)
break_flag = False
LOG.info(f"Chunk store: {self.chunk_store}")
for chunk in deepcopy(self.chunk_store):
compress_rate = 1 if chunk.is_speech else silence_compress_rate
left_len = input_audio_len - output_audio.shape[0]
# calculate chunk duration
chunk_duration_output = int(min(chunk.duration / compress_rate, left_len))
chunk_duration_input = int(min(chunk.duration, left_len * compress_rate))
LOG.info(
f"Chunk duration output: {chunk_duration_output}, input: {chunk_duration_input}, left len: {left_len}"
)
# remove chunk from store
self.chunk_store.pop(0)
if chunk.duration > chunk_duration_input:
left_chunk = attrs.evolve(
chunk, audio=chunk.audio[chunk_duration_input:]
)
chunk = attrs.evolve(chunk, audio=chunk.audio[:chunk_duration_input])
self.chunk_store.insert(0, left_chunk)
break_flag = True
if chunk.is_speech:
# if is_speech, just concat
output_audio = np.concatenate([output_audio, chunk.audio])
else:
# if is_silence, concat with zeros and compress with silence_compress_rate
output_audio = np.concatenate(
[
output_audio,
np.zeros(
chunk_duration_output,
dtype=np.float32,
),
]
)
if break_flag:
break
LOG.info(f"Chunk store: {self.chunk_store}, output_audio: {output_audio.shape}")
# make same length (errors)
output_audio = output_audio[:input_audio_len]
output_audio = np.concatenate(
[
output_audio,
np.zeros(input_audio_len - output_audio.shape[0], dtype=np.float32),
]
)
return output_audio