Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -17,51 +17,19 @@ EMOTIONS = ['neutral', 'happiness', 'surprise', 'sadness', 'anger', 'disgust', '
|
|
17 |
# face_detector_mtcnn = MTCNN()
|
18 |
classifier = load_model(emotion_model_path)
|
19 |
|
20 |
-
# def predict_emotion(frame):
|
21 |
-
# frame = imutils.resize(frame, width=300)
|
22 |
-
# gray = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
|
23 |
-
# faces = face_detection.detectMultiScale(gray, scaleFactor=1.1,
|
24 |
-
# minNeighbors=5, minSize=(30, 30),
|
25 |
-
# flags=cv2.CASCADE_SCALE_IMAGE)
|
26 |
-
|
27 |
-
# frame_clone = frame.copy()
|
28 |
-
# if len(faces) > 0:
|
29 |
-
# faces = sorted(faces, reverse=True,
|
30 |
-
# key=lambda x: (x[2] - x[0]) * (x[3] - x[1]))[0]
|
31 |
-
# (fX, fY, fW, fH) = faces
|
32 |
-
|
33 |
-
# # Extract the ROI of the face from the grayscale image, resize it to a fixed 28x28 pixels, and then prepare
|
34 |
-
# # the ROI for classification via the CNN
|
35 |
-
# roi = gray[fY:fY + fH, fX:fX + fW]
|
36 |
-
# roi = cv2.resize(roi, (48, 48))
|
37 |
-
# roi = roi.astype("float") / 255.0
|
38 |
-
# roi = img_to_array(roi)
|
39 |
-
# roi = np.expand_dims(roi, axis=0)
|
40 |
-
|
41 |
-
# preds = emotion_classifier.predict(roi)[0]
|
42 |
-
# label = EMOTIONS[preds.argmax()]
|
43 |
-
|
44 |
-
# # Overlay a box over the detected face
|
45 |
-
# cv2.putText(frame_clone, label, (fX, fY + 100),
|
46 |
-
# cv2.FONT_HERSHEY_DUPLEX, 1, (238, 164, 64), 1)
|
47 |
-
# cv2.rectangle(frame_clone, (fX, fY), (fX + fW, fY + fH),
|
48 |
-
# (238, 164, 64), 2)
|
49 |
-
|
50 |
-
# else:
|
51 |
-
# label = "Can't find your face"
|
52 |
-
|
53 |
-
# return frame_clone
|
54 |
-
|
55 |
-
|
56 |
def predict_emotion(frame):
|
57 |
frame = imutils.resize(frame, width=300)
|
58 |
gray = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
|
59 |
faces = face_detection.detectMultiScale(gray, scaleFactor=1.1,
|
60 |
minNeighbors=5, minSize=(30, 30),
|
61 |
flags=cv2.CASCADE_SCALE_IMAGE)
|
62 |
-
frame_clone = frame.copy()
|
63 |
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
65 |
# Extract the ROI of the face from the grayscale image, resize it to a fixed 28x28 pixels, and then prepare
|
66 |
# the ROI for classification via the CNN
|
67 |
roi = gray[fY:fY + fH, fX:fX + fW]
|
@@ -79,7 +47,10 @@ def predict_emotion(frame):
|
|
79 |
cv2.rectangle(frame_clone, (fX, fY), (fX + fW, fY + fH),
|
80 |
(238, 164, 64), 2)
|
81 |
|
82 |
-
|
|
|
|
|
|
|
83 |
|
84 |
|
85 |
|
@@ -102,7 +73,7 @@ demo = gr.Interface(
|
|
102 |
os.path.join(os.path.dirname(__file__), "images/gunther.jpeg")
|
103 |
|
104 |
],
|
105 |
-
title = "
|
106 |
theme = "shivi/calm_seafoam"
|
107 |
)
|
108 |
|
|
|
17 |
# face_detector_mtcnn = MTCNN()
|
18 |
classifier = load_model(emotion_model_path)
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
def predict_emotion(frame):
|
21 |
frame = imutils.resize(frame, width=300)
|
22 |
gray = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY)
|
23 |
faces = face_detection.detectMultiScale(gray, scaleFactor=1.1,
|
24 |
minNeighbors=5, minSize=(30, 30),
|
25 |
flags=cv2.CASCADE_SCALE_IMAGE)
|
|
|
26 |
|
27 |
+
frame_clone = frame.copy()
|
28 |
+
if len(faces) > 0:
|
29 |
+
faces = sorted(faces, reverse=True,
|
30 |
+
key=lambda x: (x[2] - x[0]) * (x[3] - x[1]))[0]
|
31 |
+
(fX, fY, fW, fH) = faces
|
32 |
+
|
33 |
# Extract the ROI of the face from the grayscale image, resize it to a fixed 28x28 pixels, and then prepare
|
34 |
# the ROI for classification via the CNN
|
35 |
roi = gray[fY:fY + fH, fX:fX + fW]
|
|
|
47 |
cv2.rectangle(frame_clone, (fX, fY), (fX + fW, fY + fH),
|
48 |
(238, 164, 64), 2)
|
49 |
|
50 |
+
else:
|
51 |
+
label = "Can't find your face"
|
52 |
+
|
53 |
+
return frame_clone
|
54 |
|
55 |
|
56 |
|
|
|
73 |
os.path.join(os.path.dirname(__file__), "images/gunther.jpeg")
|
74 |
|
75 |
],
|
76 |
+
title = "How are you feeling?",
|
77 |
theme = "shivi/calm_seafoam"
|
78 |
)
|
79 |
|