Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
import cv2 | |
import numpy as np | |
import imutils | |
from keras.preprocessing.image import img_to_array | |
from keras.models import load_model | |
# Load the pre-trained models and define parameters | |
detection_model_path = 'haarcascade_files/haarcascade_frontalface_default.xml' | |
emotion_model_path = 'model4_0.83/model4_entire_model.h5' | |
face_detection = cv2.CascadeClassifier(detection_model_path) | |
emotion_classifier = load_model(emotion_model_path, compile=False) | |
EMOTIONS = ['neutral', 'happiness', 'surprise', 'sadness', 'anger', 'disgust', 'fear', 'contempt', 'unknown'] | |
# face_detector_mtcnn = MTCNN() | |
classifier = load_model(emotion_model_path) | |
# def predict_emotion(frame): | |
# frame = imutils.resize(frame, width=300) | |
# gray = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) | |
# faces = face_detection.detectMultiScale(gray, scaleFactor=1.1, | |
# minNeighbors=5, minSize=(30, 30), | |
# flags=cv2.CASCADE_SCALE_IMAGE) | |
# frame_clone = frame.copy() | |
# if len(faces) > 0: | |
# faces = sorted(faces, reverse=True, | |
# key=lambda x: (x[2] - x[0]) * (x[3] - x[1]))[0] | |
# (fX, fY, fW, fH) = faces | |
# # Extract the ROI of the face from the grayscale image, resize it to a fixed 28x28 pixels, and then prepare | |
# # the ROI for classification via the CNN | |
# roi = gray[fY:fY + fH, fX:fX + fW] | |
# roi = cv2.resize(roi, (48, 48)) | |
# roi = roi.astype("float") / 255.0 | |
# roi = img_to_array(roi) | |
# roi = np.expand_dims(roi, axis=0) | |
# preds = emotion_classifier.predict(roi)[0] | |
# label = EMOTIONS[preds.argmax()] | |
# # Overlay a box over the detected face | |
# cv2.putText(frame_clone, label, (fX, fY + 100), | |
# cv2.FONT_HERSHEY_DUPLEX, 1, (238, 164, 64), 1) | |
# cv2.rectangle(frame_clone, (fX, fY), (fX + fW, fY + fH), | |
# (238, 164, 64), 2) | |
# else: | |
# label = "Can't find your face" | |
# return frame_clone | |
def predict_emotion(frame): | |
frame = imutils.resize(frame, width=300) | |
gray = cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) | |
faces = face_detection.detectMultiScale(gray, scaleFactor=1.1, | |
minNeighbors=5, minSize=(30, 30), | |
flags=cv2.CASCADE_SCALE_IMAGE) | |
for (fX, fY, fW, fH) in faces: | |
# Extract the ROI of the face from the grayscale image, resize it to a fixed 28x28 pixels, and then prepare | |
# the ROI for classification via the CNN | |
roi = gray[fY:fY + fH, fX:fX + fW] | |
roi = cv2.resize(roi, (48, 48)) | |
roi = roi.astype("float") / 255.0 | |
roi = img_to_array(roi) | |
roi = np.expand_dims(roi, axis=0) | |
preds = emotion_classifier.predict(roi)[0] | |
label = EMOTIONS[preds.argmax()] | |
# Overlay a box over the detected face | |
cv2.putText(frame_clone, label, (fX, fY - 10), | |
cv2.FONT_HERSHEY_DUPLEX, 0.5, (238, 164, 64), 1, cv2.LINE_AA) | |
cv2.rectangle(frame, (fX, fY), (fX + fW, fY + fH), | |
(238, 164, 64), 2) | |
return frame | |
demo = gr.Interface( | |
fn = predict_emotion, | |
inputs = gr.Image(type="numpy"), | |
outputs = gr.Image(), | |
# gr.components.Image(label="Predicted Emotion"), | |
# gr.components.Label(num_top_classes=2, label="Top 2 Probabilities") | |
#flagging_options=["blurry", "incorrect", "other"], | |
examples = [ | |
os.path.join(os.path.dirname(__file__), "images/chandler.jpeg"), | |
os.path.join(os.path.dirname(__file__), "images/janice.jpeg"), | |
os.path.join(os.path.dirname(__file__), "images/joey.jpeg"), | |
os.path.join(os.path.dirname(__file__), "images/phoebe.jpeg"), | |
os.path.join(os.path.dirname(__file__), "images/rachel_monica.jpeg"), | |
os.path.join(os.path.dirname(__file__), "images/ross.jpeg"), | |
os.path.join(os.path.dirname(__file__), "images/gunther.jpeg") | |
], | |
title = "Whatchu feeling?", | |
theme = "shivi/calm_seafoam" | |
) | |
if __name__ == "__main__": | |
demo.launch() |